Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = bat roost creation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 4422 KiB  
Article
Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia
by Eric S. Schroder and Ryan L. Ward
Forests 2022, 13(2), 274; https://doi.org/10.3390/f13020274 - 8 Feb 2022
Cited by 3 | Viewed by 2671
Abstract
Cavity/crevice tree-roosting bats in North America face an uncertain future with many factors impacting their populations. To benefit crevice/cavity roosting bat species, forests are often enhanced with the use of tree girdling. In October 2015, 20 maples, 22 oaks, and 18 hickories were [...] Read more.
Cavity/crevice tree-roosting bats in North America face an uncertain future with many factors impacting their populations. To benefit crevice/cavity roosting bat species, forests are often enhanced with the use of tree girdling. In October 2015, 20 maples, 22 oaks, and 18 hickories were girdled using a method with fell cut and herbicide (frilling) or double-girdling with a chainsaw. From 2016–2021, targeted trees were observed and the tree’s decay state was collected. The average time for trees to display suitable roosting characteristics for frilling trees was 3.23 years while it was 4.46 years for double girdling. The average time frilling trees contained suitable roosting characteristics was 3.20 years while it was 1.63 years for double girdling. The frilling method resulted in a quicker kill of trees than double girdling and frilling trees had suitable roosting characteristics for a longer duration. Frilling was effective killing all three types of trees, while the double girdling was less effective, especially on oaks. When grouping species and treatment in analysis, only average decay states between maple frill and oak double girdling and hickory frill and oak double girdling were significantly different. This evaluation demonstrates that roost tree creation relating to tree species and girdling methodology has a temporal component that should be considered when managing for crevice/cavity bat roosts and multiple habitat creation methods should be used in conjunction with snag creation to provide sustainable bat habitat over longer time periods. Full article
Show Figures

Figure 1

12 pages, 1789 KiB  
Article
Reproductive Ecology of Wrinkle-Lipped Free-Tailed Bats Chaerephon plicatus (Buchannan, 1800) in Relation to Guano Production in Cambodia
by Neil M. Furey, Paul A. Racey, Saveng Ith, Van Touch and Julien Cappelle
Diversity 2018, 10(3), 91; https://doi.org/10.3390/d10030091 - 14 Aug 2018
Cited by 15 | Viewed by 6048
Abstract
Wildlife populations in Southeast Asia are subject to increasing pressure from climate change, habitat loss and human disturbance. Cave-roosting bats are particularly vulnerable to all three factors. Because of the ecological services they provide, it is important to assess specific vulnerabilities to inform [...] Read more.
Wildlife populations in Southeast Asia are subject to increasing pressure from climate change, habitat loss and human disturbance. Cave-roosting bats are particularly vulnerable to all three factors. Because of the ecological services they provide, it is important to assess specific vulnerabilities to inform their conservation management. We evaluated the reproductive phenology and body condition of Chaerephon plicatus for 14 months in 2015–2016 and quantified guano harvesting at the largest colony in Cambodia in 2011–2016. As in Thailand and Myanmar, two annual breeding cycles were recorded, characterized as continuous bimodal polyoestry, with parturition primarily occurring in April and October. Significant declines occurred in body condition between the late wet season and the late dry season, suggesting that bats experience increasing energetic stress as the dry season progresses. Annual guano harvests increased over the study period but could not be used as a proxy for monitoring population size due to the loss of unknown amounts during the wet season and unquantified movements of bats between C. plicatus colonies in the region. We recommend studies to determine the scale and drivers of such movements and creation of sustainable guano harvesting and population monitoring initiatives to ensure the conservation of C. plicatus colonies in Cambodia. Full article
(This article belongs to the Special Issue Diversity and Conservation of Bats)
Show Figures

Figure 1

14 pages, 2353 KiB  
Review
Distributional Patterns and Ecological Determinants of Bat Occurrence Inside Caves: A Broad Scale Meta-Analysis
by Hernani Fernandes Magalhães De Oliveira, Monik Oprea and Raphael Igor Dias
Diversity 2018, 10(3), 49; https://doi.org/10.3390/d10030049 - 21 Jun 2018
Cited by 22 | Viewed by 11555
Abstract
Caves are important bat roosts worldwide that are used as shelters, maternity roosts, and to help in thermoregulation. Bat abundances, species richness, and association patterns inside caves can be affected by large-scale environmental variation. However, few studies have analyzed the effect of latitudinal [...] Read more.
Caves are important bat roosts worldwide that are used as shelters, maternity roosts, and to help in thermoregulation. Bat abundances, species richness, and association patterns inside caves can be affected by large-scale environmental variation. However, few studies have analyzed the effect of latitudinal and altitudinal variations on these patterns. Here, we conducted a large literature review about cave occupation by bats in Brazil. We investigated the effects of elevation and latitude on bat richness and abundance, the effect of Brazilian biomes on bats’ abundance and richness, the dependence between feeding guilds and biomes, and the effects of the number of studies conducted and the number of caves per region on bat species richness. A total of 72 studies with 9666 bats from 72 species were registered in 247 caves. We found that species richness increases toward the equator and reaches its limit at low and intermediate altitudes. Reported richness was influenced by the number of studies conducted in each region. Both latitude and elevation explained the variation in abundance and were significantly affected by biome type. The latitudinal and elevational gradient for species’ richness and abundance may be explained by the creation of stable thermal conditions in roosts at high elevations and low latitudes. Full article
(This article belongs to the Special Issue Diversity and Conservation of Bats)
Show Figures

Figure 1

18 pages, 2265 KiB  
Article
Does Thinning Homogenous and Dense Regrowth Benefit Bats? Radio-Tracking, Ultrasonic Detection and Trapping
by Bradley Law, Leroy Gonsalves, Traecey Brassil and David Hill
Diversity 2018, 10(2), 45; https://doi.org/10.3390/d10020045 - 6 Jun 2018
Cited by 15 | Viewed by 6459
Abstract
Renewal ecology promotes the creation and enhancement of landscapes that support biodiversity and ecosystem services for humans. Silvicultural thinning of forest regrowth to reduce tree competition represents a form of active management that may also benefit biodiversity, especially where secondary regrowth dominates. However, [...] Read more.
Renewal ecology promotes the creation and enhancement of landscapes that support biodiversity and ecosystem services for humans. Silvicultural thinning of forest regrowth to reduce tree competition represents a form of active management that may also benefit biodiversity, especially where secondary regrowth dominates. However, ecological responses to thinning can be complex, particularly for insectivorous bats whose ecomorphology is often related to vegetation structure. Furthermore, thinning may affect multiple aspects of bat ecology (i.e., roosting and foraging). We assessed this in dense white cypress regrowth in the Pilliga forests of New South Wales, Australia, where recent experimental thinning created thinned stands (4 × 12 ha) surrounded by unthinned regrowth. We contrasted flight activity and roost selection of three narrow-space species with differing conservation statuses (Nyctophilus corbeni, N. gouldi and N. geoffroyi), plus one edge-space species (Vespadelus vulturnus). Radio-tracking over two maternity seasons revealed a preference by all species for roosting in dead trees that were slightly larger than the mean for available dead trees in the vicinity. Although all tagged bats were caught in thinned patches, only 6% of roosts were located there. In contrast, ultrasonic detectors recorded significantly greater activity for V. vulturnus (p = 0.05) in thinned than unthinned patches and no treatment difference for Nyctophilus spp. Systematic trapping using acoustic lures found a higher trap rate for N. gouldi in unthinned than thinned treatments, but no treatment effect for N. corbeni, N. geoffroyi and V. vulturnus. Our results reveal differential use of forest treatments by multiple species, emphasising the value of heterogeneous landscapes supporting thinned and unthinned patches of dense regrowth. Full article
(This article belongs to the Special Issue Diversity and Conservation of Bats)
Show Figures

Figure 1

27 pages, 7868 KiB  
Article
Chainsaw-Carved Cavities Better Mimic the Thermal Properties of Natural Tree Hollows than Nest Boxes and Log Hollows
by Stephen R. Griffiths, Pia E. Lentini, Kristin Semmens, Simon J. Watson, Linda F. Lumsden and Kylie A. Robert
Forests 2018, 9(5), 235; https://doi.org/10.3390/f9050235 - 28 Apr 2018
Cited by 54 | Viewed by 21531
Abstract
The creation of supplementary habitats that effectively mimic the physical and thermal characteristics of natural tree hollows should be a key priority for landscape restoration and biodiversity offset programs. Here, we compare the thermal profiles of natural tree hollows with three types of [...] Read more.
The creation of supplementary habitats that effectively mimic the physical and thermal characteristics of natural tree hollows should be a key priority for landscape restoration and biodiversity offset programs. Here, we compare the thermal profiles of natural tree hollows with three types of artificial hollows designed for small marsupial gliders and tree-roosting insectivorous bats: (1) ‘chainsaw hollows’ carved directly into the trunks and branches of live trees, (2) ‘log hollows’, and (3) plywood nest boxes. Chainsaw hollows had thermal profiles that were similar to natural tree hollows: they were consistently warmer than ambient conditions at night, while remaining cooler than ambient during the day. In contrast, glider and bat boxes had the opposite pattern of heating and cooling, being slightly cooler than ambient at night and substantially hotter during the day. Glider log hollows had greater variation in internal temperatures compared to natural hollows and chainsaw hollows, but fluctuated less than glider boxes. Our results provide the first empirical evidence that artificial hollows carved directly into live trees can produce thermally stable supplementary habitats that could potentially buffer hollow-dependent fauna from weather extremes; whereas, poorly insulated plywood nest boxes produce lower-quality thermal environments. Together these findings provide positive impetus for stakeholders involved in conservation management and biodiversity offset programs to consider trialing chainsaw hollows in situations where target fauna require well-insulated supplementary habitats. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop