Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = barometric force sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 17474 KB  
Article
The Design and Development of Instrumented Toys for the Assessment of Infant Cognitive Flexibility
by Vishal Ramanathan, Mohammad Zaidi Ariffin, Guo Dong Goh, Guo Liang Goh, Mohammad Adhimas Rikat, Xing Xi Tan, Wai Yee Yeong, Juan-Pablo Ortega, Victoria Leong and Domenico Campolo
Sensors 2023, 23(5), 2709; https://doi.org/10.3390/s23052709 - 1 Mar 2023
Cited by 5 | Viewed by 4903
Abstract
The first years of an infant’s life represent a sensitive period for neurodevelopment where one can see the emergence of nascent forms of executive function (EF), which are required to support complex cognition. Few tests exist for measuring EF during infancy, and the [...] Read more.
The first years of an infant’s life represent a sensitive period for neurodevelopment where one can see the emergence of nascent forms of executive function (EF), which are required to support complex cognition. Few tests exist for measuring EF during infancy, and the available tests require painstaking manual coding of infant behaviour. In modern clinical and research practice, human coders collect data on EF performance by manually labelling video recordings of infant behaviour during toy or social interaction. Besides being extremely time-consuming, video annotation is known to be rater-dependent and subjective. To address these issues, starting from existing cognitive flexibility research protocols, we developed a set of instrumented toys to serve as a new type of task instrumentation and data collection tool suitable for infant use. A commercially available device comprising a barometer and an inertial measurement unit (IMU) embedded in a 3D-printed lattice structure was used to detect when and how the infant interacts with the toy. The data collected using the instrumented toys provided a rich dataset that described the sequence of toy interaction and individual toy interaction patterns, from which EF-relevant aspects of infant cognition can be inferred. Such a tool could provide an objective, reliable, and scalable method of collecting early developmental data in socially interactive contexts. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

19 pages, 8499 KB  
Article
BaroTac: Barometric Three-Axis Tactile Sensor with Slip Detection Capability
by Gyuwon Kim and Donghyun Hwang
Sensors 2023, 23(1), 428; https://doi.org/10.3390/s23010428 - 30 Dec 2022
Cited by 17 | Viewed by 5723
Abstract
Tactile sensors for robotic applications enhance the performance of robotic end-effectors as they ca n provide tactile information to operate various tasks. In particular, tactile sensors can measure multi-axial force and detect slip can aid the end-effectors in grasping diverse objects in an [...] Read more.
Tactile sensors for robotic applications enhance the performance of robotic end-effectors as they ca n provide tactile information to operate various tasks. In particular, tactile sensors can measure multi-axial force and detect slip can aid the end-effectors in grasping diverse objects in an unstructured environment. We propose BaroTac, which measures three-axial forces and detects slip with a barometric pressure sensor chip (BPSC) for robotic applications. A BPSC is an off-the-shelf commercial sensor that is inexpensive, easy to customize, robust, and simple to use. While a single BPSC-based tactile sensor can measure pressure, an array of BPSC-based tactile sensors can measure multi-axial force through the reactivity of each sensor and detect slip by observing high frequency due to slip vibration. We first experiment with defining the fundamental characteristics of a single-cell BPSC-based sensor to set the design parameters of our proposed sensor. Thereafter, we suggest the sensing method of BaroTac: calibration matrix for three-axis force measurement and discrete wavelet transform (DWT) for slip detection. Subsequently, we validate the three-axis force measuring ability and slip detectability of the fabricated multi-cell BPSC-based tactile sensor. The sensor measures three-axis force with low error (0.14, 0.18, and 0.3% in the X-, Y- and Z-axis, respectively) and discriminates slip in the high-frequency range (75–150 Hz). We finally show the practical applicability of BaroTac by installing them on the commercial robotic gripper and controlling the gripper to grasp common objects based on our sensor feedback. Full article
(This article belongs to the Special Issue Advanced Tactile Sensors)
Show Figures

Figure 1

43 pages, 7312 KB  
Review
MEMS-Based Tactile Sensors: Materials, Processes and Applications in Robotics
by Ilker S. Bayer
Micromachines 2022, 13(12), 2051; https://doi.org/10.3390/mi13122051 - 23 Nov 2022
Cited by 48 | Viewed by 15723
Abstract
Commonly encountered problems in the manipulation of objects with robotic hands are the contact force control and the setting of approaching motion. Microelectromechanical systems (MEMS) sensors on robots offer several solutions to these problems along with new capabilities. In this review, we analyze [...] Read more.
Commonly encountered problems in the manipulation of objects with robotic hands are the contact force control and the setting of approaching motion. Microelectromechanical systems (MEMS) sensors on robots offer several solutions to these problems along with new capabilities. In this review, we analyze tactile, force and/or pressure sensors produced by MEMS technologies including off-the-shelf products such as MEMS barometric sensors. Alone or in conjunction with other sensors, MEMS platforms are considered very promising for robots to detect the contact forces, slippage and the distance to the objects for effective dexterous manipulation. We briefly reviewed several sensing mechanisms and principles, such as capacitive, resistive, piezoresistive and triboelectric, combined with new flexible materials technologies including polymers processing and MEMS-embedded textiles for flexible and snake robots. We demonstrated that without taking up extra space and at the same time remaining lightweight, several MEMS sensors can be integrated into robotic hands to simulate human fingers, gripping, hardness and stiffness sensations. MEMS have high potential of enabling new generation microactuators, microsensors, micro miniature motion-systems (e.g., microrobots) that will be indispensable for health, security, safety and environmental protection. Full article
Show Figures

Figure 1

24 pages, 3901 KB  
Article
A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements
by Angelo Maria Sabatini and Vincenzo Genovese
Sensors 2014, 14(8), 13324-13347; https://doi.org/10.3390/s140813324 - 24 Jul 2014
Cited by 57 | Viewed by 11040
Abstract
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from [...] Read more.
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop