Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = azotization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 391 KiB  
Communication
Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit
by Alejandro Alarcón-Zayas, Luis Guillermo Hernández-Montiel, Diana Medina-Hernández, Edgar Omar Rueda-Puente, Wilson Geobel Ceiro-Catasú and Ramón Jaime Holguín-Peña
Microbiol. Res. 2024, 15(1), 187-195; https://doi.org/10.3390/microbiolres15010013 - 11 Jan 2024
Cited by 3 | Viewed by 1763
Abstract
Arbuscular mycorrhizal fungi, plant-growth-promoting bacteria (PGPB) and vermicompost constitute important environmental and economic resources for improving the production and quality of tomato fruits. The present research aims to determine the single and combined effect of Glomus fasciculatum (Gf) fungus, Azotobacter chroococcum (Azot), PGPB [...] Read more.
Arbuscular mycorrhizal fungi, plant-growth-promoting bacteria (PGPB) and vermicompost constitute important environmental and economic resources for improving the production and quality of tomato fruits. The present research aims to determine the single and combined effect of Glomus fasciculatum (Gf) fungus, Azotobacter chroococcum (Azot), PGPB and vermicompost leachate (VL) organic fertilizer on the yield and quality of tomato fruit. Thus, an open-field experiment was established with seven treatments, a control and three replicates. Total soluble solids, vitamin C, acidity, fruit mass and fruit diameter were evaluated as fruit quality variables; the yield was recorded and estimated in tons per hectare−1. The results showed that Gf, Azot and VL were effective in promoting tomato yield and fruit quality. As a trend, the triple combination (Gf + Azot + VL) evidently obtained the highest values of total soluble solids, vitamin C and fruit acidity. The range of improvement concerning the fruit size was 66.6% (single treatment) compared to 78.5% (triple combination). The maximum yield of 54.5 t/ha−1 was recorded for the Gf + Azot + VL combination. Therefore, G. fasciculatum, A. chroococcum and VL are considered useful as organic alternatives for open-field tomato biofertilization programs in tropical countries. Full article
Show Figures

Figure 1

9 pages, 739 KiB  
Article
Is It Possible to Replace Part of the Mineral Nitrogen Dose in Maize for Grain by Using Growth Activators and Plant Growth-Promoting Rhizobacteria?
by Arkadiusz Artyszak and Dariusz Gozdowski
Agronomy 2020, 10(11), 1647; https://doi.org/10.3390/agronomy10111647 - 26 Oct 2020
Cited by 12 | Viewed by 2979
Abstract
The European Green Deal presented by the European Commission aims to reduce nutrient losses by at least 50% while preventing the deterioration of soil fertility and reducing the use of fertilizers by at least 20% by 2030. Farmers in the EU must prepare [...] Read more.
The European Green Deal presented by the European Commission aims to reduce nutrient losses by at least 50% while preventing the deterioration of soil fertility and reducing the use of fertilizers by at least 20% by 2030. Farmers in the EU must prepare for this. Studies carried out in several locations in Poland in 2017–2019 tested the possibility of replacing 30–40% of the dose of mineral nitrogen by Penergetic (K + P) growth activators alone and in combination with Azoter containing plant growth promoting rhizobacteria in the cultivation of maize for grain. It was confirmed that the two combinations allowed a higher yield of maize grain by 2.9% and 8.8%, respectively, compared to the full nitrogen dose. Positive changes in the content of some assimilable macro- and microelements and soil organic carbon (SOC), and an increase in soil pH, were also observed. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 699 KiB  
Article
The Effect of Growth Activators and Plant Growth-Promoting Rhizobacteria (PGPR) on the Soil Properties, Root Yield, and Technological Quality of Sugar Beet
by Arkadiusz Artyszak and Dariusz Gozdowski
Agronomy 2020, 10(9), 1262; https://doi.org/10.3390/agronomy10091262 - 26 Aug 2020
Cited by 38 | Viewed by 5468
Abstract
The strategy “from farm to fork” assumes a reduction in the usage of fertilizers and plant protection products in EU agriculture. The aim of this study, conducted over the years 2017–2019 in several locations in Poland, is to evaluate the application of growth [...] Read more.
The strategy “from farm to fork” assumes a reduction in the usage of fertilizers and plant protection products in EU agriculture. The aim of this study, conducted over the years 2017–2019 in several locations in Poland, is to evaluate the application of growth activators with and without plant growth-promoting rhizobacteria to reduce mineral nitrogen fertilization without negative effects on the root yield. We studied the effect of these activators on selected soil properties. The experimental treatments included the application of the growth activators Penergetic (K + P) and Azoter, which contains the bacteria Azotobacter chroococcum, Azospirillum brasilense, and Bacillus megaterium, before sowing or during vegetation. The nitrogen rates were reduced by 30% in comparison to full nitrogen mineral fertilization (control treatment). In selected experiments, the application of Penergetic and Penergetic with Azoter caused a higher content of nitrate nitrogen (N-NO3) and ammonium nitrogen (N-NH4) after the sugar beet harvest as well as higher contents of mineral nitrogen (Nmin), P, K, and Mg in the soil in comparison to the treatment with the full dose of mineral nitrogen fertilization. The obtained results proved that it was possible to reduce the mineral application of nitrogen by 30% without a decrease in the biological and pure sugar yield, and even with an increase in the sugar yield caused by the application of the growth activators Penergetic (K + P) and Azoter. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

13 pages, 6592 KiB  
Article
5-Phenyl-10,15,20-Tris(4-sulfonatophenyl)porphyrin: Synthesis, Catalysis, and Structural Studies
by Aitor Arlegui, Zoubir El-Hachemi, Joaquim Crusats and Albert Moyano
Molecules 2018, 23(12), 3363; https://doi.org/10.3390/molecules23123363 - 19 Dec 2018
Cited by 15 | Viewed by 6833
Abstract
A convenient protocol for the preparation of 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphyrin, a water-soluble porphyrin with unique aggregation properties, is described. The procedure relies on the one-pot reductive deamination of 5-(4-aminophenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin, that can be in turn easily obtained from 5,10,15,20-tetraphenylporphyrin by a known three-step sequence involving mononitration, [...] Read more.
A convenient protocol for the preparation of 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphyrin, a water-soluble porphyrin with unique aggregation properties, is described. The procedure relies on the one-pot reductive deamination of 5-(4-aminophenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin, that can be in turn easily obtained from 5,10,15,20-tetraphenylporphyrin by a known three-step sequence involving mononitration, nitro to amine reduction and sulfonation of the phenyl groups. This method provides the title porphyrin in gram scale, and compares very favorably with the up to now only described procedure based on the partial sulfonation of TPP, that involves a long and tedious chromatographic enrichment of the final compound. This has allowed us to study for the first time both the use of its zwitterionic aggregate as a supramolecular catalyst of the aqueous Diels–Alder reaction, and the morphology of the aggregates obtained under optimized experimental conditions by atomic force microscopy and also by transmission electron cryomicroscopy. Full article
Show Figures

Graphical abstract

Back to TopTop