Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = available water resources (AWRs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2135 KiB  
Article
Study on the Contribution of Land Use and Climate Change to Available Water Resources in Basins Based on Vector Autoregression (VAR) Model
by Mengmeng Jiang, Zening Wu, Xi Guo, Huiliang Wang and Yihong Zhou
Water 2023, 15(11), 2130; https://doi.org/10.3390/w15112130 - 3 Jun 2023
Cited by 5 | Viewed by 2259
Abstract
Under the influence of global climate change and urbanization processes, the number of available water resources (AWRs) in basins has become significantly more uncertain, which has restricted the sustainable development of basins. Therefore, it is important for us to understand the relationship between [...] Read more.
Under the influence of global climate change and urbanization processes, the number of available water resources (AWRs) in basins has become significantly more uncertain, which has restricted the sustainable development of basins. Therefore, it is important for us to understand the relationship between land use (LU) patterns and climate change on AWRs in a basin for sustainable development. To this end, the vector autoregressive (VAR) method was adopted to construct a quantitative model for AWRs in the basin in this study. Taking the Yiluo River Basin (YRB) as an example, the dynamic relationship between the five elements of agricultural land (AD), woodland (WD), grassland (GD), construction land (CD), and annual precipitation (PREP) and AWRs in the basin was studied. The results show the following: (1) The constructed VAR model was stable, indicating that the use of the proposed VAR model to characterize the degree of the effect of LU pattern and PREP on AWRs in the YRB was reasonable and effective. (2) AWRs in the YRB showed a downward trend, and their responses to the change in LU and PREP were delayed. The changes in the AWRs in the YRB tended to occur the year after changes to the LU pattern and PREP occurred. (3) In the long run, the degree of the contribution of each influencing factor to changes to AWRs was 23.76% (AD), 6.09% (PREP), 4.56% (CD), 4.40% (WD), and 4.34% (GD), which meant that the impact of the LU pattern was more than 90%. This study provides new ideas for similar research, water resource allocation, and LU planning in other river basins from a macroscopic perspective. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

Back to TopTop