Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = autoranging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3348 KiB  
Article
The Performance of a Passive Autoranging Method for a Photonic Current Transducer
by Grzegorz Fusiek, Burhan Mir and Pawel Niewczas
Sensors 2024, 24(10), 3183; https://doi.org/10.3390/s24103183 - 17 May 2024
Viewed by 1075
Abstract
This paper reports on the testing and evaluation of a passive autoranging (AR) method designed to dynamically extend the measurement range of a photonic current transducer (PCT) to pave the way toward a realization of a combined metering- and protection-class current sensor. The [...] Read more.
This paper reports on the testing and evaluation of a passive autoranging (AR) method designed to dynamically extend the measurement range of a photonic current transducer (PCT) to pave the way toward a realization of a combined metering- and protection-class current sensor. The PCT utilizes a current transformer (CT), a piezoelectric transducer (PZT), and a fiber Bragg grating (FBG) to enable current measurement at multiple points in an electrical power network whereby multiple sensors are deployed and interrogated serially using a single optical fiber. The autoranging technique relies on incorporating static MOSFET switches to instantaneously short individual serially connected CT burdens in response to a measured current magnitude exceeding pre-set thresholds. The AR circuit switching events produce distinctive signal features that are used by the proposed switching algorithm to apply appropriate scaling factors to reconstruct the measured current from the optical signal. It is shown through laboratory experiments that the AR circuit correctly reacts to pre-set burden current thresholds of 130% of the nominal value and 22 times the nominal value, signifying its “metering” and “protection” range boundaries. The circuit reaction time is below 4 ms, rendering it suitable for standard power system protection purposes. Moreover, the operation of the AR circuit is demonstrated for burden currents of up to 100 A for over 1 s, satisfying a test procedure for the secondary CT circuit, as required by some power system operators. It is demonstrated that the proposed switching algorithm allows for a correct reconstruction of the burden currents from the optical signal acquired by the FBG interrogator, offering the potential to realize a dual-class optical current sensor. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

27 pages, 7387 KiB  
Article
Design and Implementation of a Passive Autoranging Circuit for Hybrid FBG-PZT Photonic Current Transducer
by Burhan Mir, Pawel Niewczas and Grzegorz Fusiek
Sensors 2023, 23(1), 551; https://doi.org/10.3390/s23010551 - 3 Jan 2023
Cited by 3 | Viewed by 3040
Abstract
In this paper, we present a novel technique for passively autoranging a photonic current transducer (PCT) that incorporates a current transformer (CT), piezoelectric transducer (PZT) and fiber Bragg grating (FBG). Due to the usage of single-mode fiber and FBG, multiple PCTs can be [...] Read more.
In this paper, we present a novel technique for passively autoranging a photonic current transducer (PCT) that incorporates a current transformer (CT), piezoelectric transducer (PZT) and fiber Bragg grating (FBG). Due to the usage of single-mode fiber and FBG, multiple PCTs can be interconnected and distributed over a long distance, for example along a power network, greatly reducing the cost of sensor deployment and offering other unique advantages. The autoranging technique relies on the usage of multiple, serially connected CT burden resistors and associated static MOSFET switches to realize instantaneous shortening of the resistors in response to increasing measured current. This functionality is realized passively, utilizing a modular, μW-power comparator circuit that powers itself from the electrical energy supplied by the CT within a small fraction of the 50/60 Hz cycle. The resultant instantaneous changes in sensor gain will be ultimately detected by the central FBG interrogator through real-time analysis of the optical signals and will be used to apply appropriate gain scaling for each sensor. The technique will facilitate the usage of a single PCT to cover an extended dynamic range of the measurement that is required to realize a combined metering- and protection-class current sensor. This paper is limited to the description of the design process, construction, and testing of a prototype passive autoranging circuitry for integration with the PCT. The two-stage circuitry that is based on two burden resistors, 1 Ω and 10 Ω, is used to prove the concept and demonstrate the practically achievable circuit characteristics. It is shown that the circuit correctly reacts to input current threshold breaches of approximately 2 A and 20 A within a 3 ms reaction time. The circuit produces distinct voltage dips across burden resistors that will be used for signal scaling by the FBG interrogator. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

17 pages, 20052 KiB  
Article
A 33 MHz Fast-Locking PLL with Programmable VCO and Automatic Band Selection for Clock Generator Application
by Neeraj Agarwal, Neeru Agarwal, Chih-Wen Lu and Masahito Oh-e
Electronics 2021, 10(14), 1743; https://doi.org/10.3390/electronics10141743 - 20 Jul 2021
Cited by 1 | Viewed by 5730
Abstract
This paper presents a prototype of an auto-ranging phase-locked loop (PLL) with low jitter noise over a wide operating frequency range using the multiband programmable voltage-controlled oscillator (VCO) gain stage with automatic band selection. We successfully reduce the VCO gain (Kvco) and retain [...] Read more.
This paper presents a prototype of an auto-ranging phase-locked loop (PLL) with low jitter noise over a wide operating frequency range using the multiband programmable voltage-controlled oscillator (VCO) gain stage with automatic band selection. We successfully reduce the VCO gain (Kvco) and retain the desired frequency band. The proposed PLL comprises a prescaler, phase frequency detector (PFD), charge pump (CP), programmable VCO and automatic band selection circuit. The PLL prototype with all subblocks was implemented using the TSMC 0.18 μm 1P6M process. Contrary to conventional PLL architectures, the proposed architecture incorporates a real-time check and automatic band selection circuit in the secondary loop. A high-performance dual-loop PLL wide tuning range was realized using an ASIC digital control circuit. A suitable way to maintain the Kvco low is to use multiple discrete frequency bands to accommodate the required frequency range. To maintain a low Kvco and fast locking, the automatic frequency band selection circuit also has two indigenous, most probable voltage levels. The proposed architecture provides the flexibility of not only band hopping but also band twisting to obtain an optimized Kvco for the desired output range, with the minimum jitter and spurs. The proposed programmable VCO was designed using a voltage-to-current-converter circuit and current DAC followed by a four-stage differential ring oscillator with a cross-coupled pair. The VCO frequency output range is 150–400 MHz, while the input frequency is 25 MHz. A sequential phase detection loop with a negligible dead zone was designed to adjust fine phase errors between the reference and feedback clocks. All circuit blocks of the proposed PLL were simulated using the EDA tool HSPICE and layout generation by Laker. The simulation and measured results of the proposed PLL show high linearity, with a dead zone of less than 10 pV. The differential VCO was used to improve the linearity and phase noise of the PLL. The chip measured results show rms jitter of 19.10 ps. The PLL prototype also has an additional safety feature of a power down mode. The automatic band selection PLL has good immunity for possible frequency drifting due to temperature, process and supply voltage variations. The proposed PLL is designed for −40 to +85 °C, a wide temperature range. Full article
(This article belongs to the Special Issue Design of Mixed Analog/Digital Circuits)
Show Figures

Figure 1

18 pages, 227 KiB  
Article
A Portable Sensing System for Electronic Tongue Operations
by Karen Twomey, Andreas Truemper and Kilian Murphy
Sensors 2006, 6(11), 1679-1696; https://doi.org/10.3390/s6111679 - 23 Nov 2006
Cited by 18 | Viewed by 10053
Abstract
A portable, low cost sensing system is described which interfaces to an electronictongue sensor. The sensor used is a voltammetric sensor which monitors electrochemicalreactions that occur in solutions. The sensor is able to test a range of liquids with differentelectrochemical properties without any [...] Read more.
A portable, low cost sensing system is described which interfaces to an electronictongue sensor. The sensor used is a voltammetric sensor which monitors electrochemicalreactions that occur in solutions. The sensor is able to test a range of liquids with differentelectrochemical properties without any hardware adjustments to the system. The system canautomatically adjust for the change in solution properties by performing a routine whichuses an auto-ranging feature to determine a current-to-voltage conversion of the sensor databy using a binary search strategy. This eliminates the intervention of the user to modify thesystem each time a new solution is tested. The effectiveness of the calibration routine wastested by carrying out cyclic voltammetry in two different solutions, 0.1M sulfuric acidsolution and the phosphate buffered solution of pH3. The sensor system was able toaccurately acquire the sensor data for each solution. Full article
Show Figures

Back to TopTop