Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = automatic upstream water level control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5045 KB  
Article
Evaluating Water Level Variability Under Different Sluice Gate Operation Strategies: A Case Study of the Long Xuyen Quadrangle, Vietnam
by Dinh Van Duy, Nguyen Thai An, Tran Van Ty, Lam Tan Phat, Ngo Thanh Toan, Huynh Vuong Thu Minh, Nigel K. Downes and Hitoshi Tanaka
Hydrology 2025, 12(5), 102; https://doi.org/10.3390/hydrology12050102 - 23 Apr 2025
Cited by 4 | Viewed by 2546
Abstract
The Vietnamese Mekong Delta (VMD) faces increasing challenges due to upstream hydrological fluctuations and climate change, necessitating optimized water management strategies. Sluice gates play a critical role in regulating water levels, yet their effectiveness under different operational modes remains insufficiently assessed. This study [...] Read more.
The Vietnamese Mekong Delta (VMD) faces increasing challenges due to upstream hydrological fluctuations and climate change, necessitating optimized water management strategies. Sluice gates play a critical role in regulating water levels, yet their effectiveness under different operational modes remains insufficiently assessed. This study examines water level fluctuations under three sluice gate operation scenarios implemented along the West Sea dike in the Long Xuyen Quadrangle, Kien Giang Province, using the MIKE 11 hydrodynamic model. The model was calibrated and validated using the observed data, yielding high accuracy at key sluice gates, including Kien River and Ba Hon. Three sluice gate management scenarios were tested: (1) the current automatic and partially forced operation, (2) fully automatic gate control, and (3) fully forced hydraulic operation. The simulation results indicate that Scenario 3 maintained water levels above +0.6 m more frequently, ensuring better water availability for irrigation and domestic use, while Scenarios 1 and 2 resulted in lower water levels at certain locations. Additionally, forced operation led to higher gate opening and closing frequencies at key sluices, allowing for more adaptive control over water levels. These findings emphasize the benefits of proactive sluice gate management in improving water regulation and mitigating the water scarcity risks. This study is among the first to provide empirical, scenario-based evidence comparing fully forced, automatic, and mixed sluice gate strategies under varying hydrological conditions in the Long Xuyen Quadrangle. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

11 pages, 3299 KB  
Article
Theoretical and Experimental Analysis of Operating Conditions of a Circular Flap Gate for an Automatic Upstream Water Level Control
by Janusz Kubrak, Elżbieta Kubrak, Edmund Kaca, Adam Kiczko and Michał Kubrak
Water 2019, 11(12), 2576; https://doi.org/10.3390/w11122576 - 6 Dec 2019
Cited by 4 | Viewed by 5276
Abstract
This article introduces a flow controller for an upstream water head designed for pipe culverts used in drainage ditches or wells. The regulator is applicable to water flow rates in the range of Qmin < Q < Qmax and the water [...] Read more.
This article introduces a flow controller for an upstream water head designed for pipe culverts used in drainage ditches or wells. The regulator is applicable to water flow rates in the range of Qmin < Q < Qmax and the water depth H0, exceeding which causes the gate to open. Qmin flow denotes the minimum flow rate that allows water to accumulate upstream of the controller. Above the maximum flow rate Qmax, the gate remains in the open position. In the present study, the position of the regulator’s gate axis was related to the water depth H0 in front of the device. Derived dependencies were verified in hydraulic experiments. The results confirmed the regulator’s usefulness for controlling the water level. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop