Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = astrocytic endfoot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14036 KiB  
Article
RiboTag RNA Sequencing Identifies Local Translation of HSP70 in Astrocyte Endfeet After Cerebral Ischemia
by Bosung Shim, Prajwal Ciryam, Cigdem Tosun, Riccardo Serra, Natalya Tsymbalyuk, Kaspar Keledjian, Volodymyr Gerzanich and J. Marc Simard
Int. J. Mol. Sci. 2025, 26(1), 309; https://doi.org/10.3390/ijms26010309 - 1 Jan 2025
Viewed by 1843
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood–brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we [...] Read more.
Brain ischemia causes disruption in cerebral blood flow and blood–brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the endfoot translatome after ischemia. The main biological processes associated with these differentially expressed genes included proteostasis, inflammation, cell cycle/death, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b, which encode the inducible HSP70. Using qPCR, Western blot, and immunohistochemistry, we confirmed that HSP70 is upregulated in astrocyte endfeet after ischemia. This coincided with an increase in ubiquitination across the proteome that suggests that ischemia induces a disruption in proteostasis in astrocyte endfeet. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfoot function and BBB integrity after ischemic stroke. Full article
(This article belongs to the Special Issue New Trends in Research on Cerebral Ischemia)
Show Figures

Figure 1

34 pages, 13188 KiB  
Article
Modeling of Blood Flow Dynamics in Rat Somatosensory Cortex
by Stéphanie Battini, Nicola Cantarutti, Christos Kotsalos, Yann Roussel, Alessandro Cattabiani, Alexis Arnaudon, Cyrille Favreau, Stefano Antonel, Henry Markram and Daniel Keller
Biomedicines 2025, 13(1), 72; https://doi.org/10.3390/biomedicines13010072 - 31 Dec 2024
Cited by 1 | Viewed by 1229
Abstract
Background: The cerebral microvasculature forms a dense network of interconnected blood vessels where flow is modulated partly by astrocytes. Increased neuronal activity stimulates astrocytes to release vasoactive substances at the endfeet, altering the diameters of connected vessels. Methods: Our study simulated the coupling [...] Read more.
Background: The cerebral microvasculature forms a dense network of interconnected blood vessels where flow is modulated partly by astrocytes. Increased neuronal activity stimulates astrocytes to release vasoactive substances at the endfeet, altering the diameters of connected vessels. Methods: Our study simulated the coupling between blood flow variations and vessel diameter changes driven by astrocytic activity in the rat somatosensory cortex. We developed a framework with three key components: coupling between the vasculature and synthesized astrocytic morphologies, a fluid dynamics model to compute flow in each vascular segment, and a stochastic process replicating the effect of astrocytic endfeet on vessel radii. Results: The model was validated against experimental flow values from the literature across cortical depths. We found that local vasodilation from astrocyte activity increased blood flow, especially in capillaries, exhibiting a layer-specific response in deeper cortical layers. Additionally, the highest blood flow variability occurred in capillaries, emphasizing their role in cerebral perfusion regulation. We discovered that astrocytic activity impacted blood flow dynamics in a localized, clustered manner, with most vascular segments influenced by two to three neighboring endfeet. Conclusions: These insights enhance our understanding of neurovascular coupling and guide future research on blood flow-related diseases. Full article
(This article belongs to the Special Issue Microcirculation in Health and Diseases)
Show Figures

Graphical abstract

21 pages, 7251 KiB  
Article
Ependymal and Neural Stem Cells of Adult Molly Fish (Poecilia sphenops, Valenciennes, 1846) Brain: Histomorphometry, Immunohistochemical, and Ultrastructural Studies
by Doaa M. Mokhtar, Ramy K. A. Sayed, Giacomo Zaccone, Marco Albano and Manal T. Hussein
Cells 2022, 11(17), 2659; https://doi.org/10.3390/cells11172659 - 27 Aug 2022
Cited by 12 | Viewed by 3064
Abstract
This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to investigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and [...] Read more.
This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to investigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and their processes extended through the tectal laminae and ended at the surface of the tectum as a subpial end-foot. Two cell types of ECs were identified: cuboidal non-ciliated (5.68 ± 0.84/100 μm2) and columnar ciliated (EC3.22 ± 0.71/100 μm2). Immunohistochemical analysis revealed two types of GFAP immunoreactive cells: ECs and astrocytes. The ECs showed the expression of IL-1β, APG5, and Nfr2. Moreover, ECs showed immunostaining for myostatin, S100, and SOX9 in their cytoplasmic processes. The proliferative activity of the neighboring stem cells was also distinct. The most interesting finding in this study was the glia–neuron interaction, where the processes of ECs met the progenitor neuronal cells in the ependymal area of the ventricular wall. These cells showed bundles of intermediate filaments in their processes and basal poles and were connected by desmosomes, followed by gap junctions. Many membrane-bounded vesicles could be demonstrated on the surface of the ciliated ECs that contained neurosecretion. The abluminal and lateral cell surfaces of ECs showed pinocytotic activities with many coated vesicles, while their apical cytoplasm contained centrioles. The occurrence of stem cells in close position to the ECs, and the presence of bundles of generating axons in direct contact with these stem cells indicate the role of ECs in neurogenesis. The TEM results revealed the presence of neural stem cells in a close position to the ECs, in addition to the presence of bundles of generating axons in direct contact with these stem cells. The present study indicates the role of ECs in neurogenesis. Full article
(This article belongs to the Special Issue Neurogenesis and Regeneration in Teleost Central Nervous System)
Show Figures

Figure 1

14 pages, 8912 KiB  
Article
Disassembly and Mislocalization of AQP4 in Incipient Scar Formation after Experimental Stroke
by Shervin Banitalebi, Nadia Skauli, Samuel Geiseler, Ole Petter Ottersen and Mahmood Amiry-Moghaddam
Int. J. Mol. Sci. 2022, 23(3), 1117; https://doi.org/10.3390/ijms23031117 - 20 Jan 2022
Cited by 16 | Viewed by 3591
Abstract
There is an urgent need to better understand the mechanisms involved in scar formation in the brain. It is well known that astrocytes are critically engaged in this process. Here, we analyze incipient scar formation one week after a discrete ischemic insult to [...] Read more.
There is an urgent need to better understand the mechanisms involved in scar formation in the brain. It is well known that astrocytes are critically engaged in this process. Here, we analyze incipient scar formation one week after a discrete ischemic insult to the cerebral cortex. We show that the infarct border zone is characterized by pronounced changes in the organization and subcellular localization of the major astrocytic protein AQP4. Specifically, there is a loss of AQP4 from astrocytic endfoot membranes that anchor astrocytes to pericapillary basal laminae and a disassembly of the supramolecular AQP4 complexes that normally abound in these membranes. This disassembly may be mechanistically coupled to a downregulation of the newly discovered AQP4 isoform AQP4ex. AQP4 has adhesive properties and is assumed to facilitate astrocyte mobility by permitting rapid volume changes at the leading edges of migrating astrocytes. Thus, the present findings provide new insight in the molecular basis of incipient scar formation. Full article
(This article belongs to the Special Issue CNS Injuries)
Show Figures

Figure 1

28 pages, 397 KiB  
Review
Treatment of Neuromyelitis Optica Spectrum Disorders
by Koon-Ho Chan and Chi-Yan Lee
Int. J. Mol. Sci. 2021, 22(16), 8638; https://doi.org/10.3390/ijms22168638 - 11 Aug 2021
Cited by 40 | Viewed by 11204
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune central nervous system (CNS) inflammatory disorder that can lead to serious disability and mortality. Females are predominantly affected, including those within the reproductive age. Most patients develop relapsing attacks of optic neuritis; longitudinally extensive transverse [...] Read more.
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune central nervous system (CNS) inflammatory disorder that can lead to serious disability and mortality. Females are predominantly affected, including those within the reproductive age. Most patients develop relapsing attacks of optic neuritis; longitudinally extensive transverse myelitis; and encephalitis, especially brainstem encephalitis. The majority of NMOSD patients are seropositive for IgG autoantibodies against the water channel protein aquaporin-4 (AQP4-IgG), reflecting underlying aquaporin-4 autoimmunity. Histological findings of the affected CNS tissues of patients from in-vitro and in-vivo studies support that AQP4-IgG is directly pathogenic in NMOSD. It is believed that the binding of AQP4-IgG to CNS aquaporin-4 (abundantly expressed at the endfoot processes of astrocytes) triggers astrocytopathy and neuroinflammation, resulting in acute attacks. These attacks of neuroinflammation can lead to pathologies, including aquaporin-4 loss, astrocytic activation, injury and loss, glutamate excitotoxicity, microglial activation, neuroinflammation, demyelination, and neuronal injury, via both complement-dependent and complement-independent pathophysiological mechanisms. With the increased understanding of these mechanisms underlying this serious autoimmune astrocytopathy, effective treatments for both active attacks and long-term immunosuppression to prevent relapses in NMOSD are increasingly available based on the evidence from retrospective observational data and prospective clinical trials. Knowledge on the indications and potential side effects of these medications are essential for a clear evaluation of the potential benefits and risks to NMOSD patients in a personalized manner. Special issues such as pregnancy and the coexistence of other autoimmune diseases require additional concern and meticulous care. Future directions include the identification of clinically useful biomarkers for the prediction of relapse and monitoring of the therapeutic response, as well as the development of effective medications with minimal side effects, especially opportunistic infections complicated by long-term immunosuppression. Full article
(This article belongs to the Special Issue New Advances in the Pathogenesis, Diagnosis and Treatment of NMOSD)
10 pages, 4998 KiB  
Article
Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?
by Petra Fallier-Becker, Maike Nieser, Ulrike Wenzel, Rainer Ritz and Susan Noell
Int. J. Mol. Sci. 2016, 17(8), 1230; https://doi.org/10.3390/ijms17081230 - 29 Jul 2016
Cited by 13 | Viewed by 5753
Abstract
The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is [...] Read more.
The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. Full article
(This article belongs to the Special Issue Aquaporin)
Show Figures

Figure 1

Back to TopTop