Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = asthenoteratozoospermia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3846 KiB  
Article
The Odad3 Gene Is Necessary for Spermatozoa Development and Male Fertility in Mice
by Miriam Pasquini, Francesco Chiani, Alessia Gambadoro, Chiara Di Pietro, Renata Paoletti, Tiziana Orsini, Sabrina Putti, Ferdinando Scavizzi, Gina La Sala and Olga Ermakova
Cells 2024, 13(12), 1053; https://doi.org/10.3390/cells13121053 - 18 Jun 2024
Cited by 2 | Viewed by 1733
Abstract
Odad3 gene loss-of-function mutation leads to Primary Ciliary Dyskinesia (PCD), a disease caused by motile cilia dysfunction. Previously, we demonstrated that knockout of the Odad3 gene in mice replicates several features of PCD, such as hydrocephalus, defects in left–right body symmetry, and male [...] Read more.
Odad3 gene loss-of-function mutation leads to Primary Ciliary Dyskinesia (PCD), a disease caused by motile cilia dysfunction. Previously, we demonstrated that knockout of the Odad3 gene in mice replicates several features of PCD, such as hydrocephalus, defects in left–right body symmetry, and male infertility, with a complete absence of sperm in the reproductive tract. The majority of Odad3 knockout animals die before sexual maturation due to severe hydrocephalus and failure to thrive, which precludes fertility studies. Here, we performed the expression analysis of the Odad3 gene during gonad development and in adult testes. We showed that Odad3 starts its expression during the first wave of spermatogenesis, specifically at the meiotic stage, and that its expression is restricted to the germ cells in the adult testes, suggesting that Odad3 plays a role in spermatozoa formation. Subsequently, we conditionally deleted the Odad3 gene in adult males and demonstrated that even partial ablation of the Odad3 gene leads to asthenoteratozoospermia with multiple morphological abnormalities of sperm flagella (MMAF) in mice. The analysis of the seminiferous tubules in Odad3-deficient mice revealed defects in spermatogenesis with accumulation of seminiferous tubules at the spermiogenesis and spermiation phases. Furthermore, analysis of fertility in heterozygous Odad3+/− knockout mice revealed a reduction in sperm count and motility as well as abnormal sperm morphology. Additionally, Odad3+/− males exhibited a shorter fertile lifespan. Overall, these results suggest the important role of Odad3 and Odad3 gene dosage in male fertility. These findings may have an impact on the genetic and fertility counseling practice of PCD patients carrying Odad3 loss-of-function mutations. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases)
Show Figures

Graphical abstract

19 pages, 10413 KiB  
Article
LRRC46 Accumulates at the Midpiece of Sperm Flagella and Is Essential for Spermiogenesis and Male Fertility in Mouse
by Yingying Yin, Wenyu Mu, Xiaochen Yu, Ziqi Wang, Ke Xu, Xinyue Wu, Yuling Cai, Mingyu Zhang, Gang Lu, Wai-Yee Chan, Jinlong Ma, Tao Huang and Hongbin Liu
Int. J. Mol. Sci. 2022, 23(15), 8525; https://doi.org/10.3390/ijms23158525 - 31 Jul 2022
Cited by 13 | Viewed by 4155
Abstract
The sperm flagellum is essential for male fertility. Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. MMAF phenotypes are understood to result from pathogenic variants of genes from multiple families including AKAP, DANI, DNAH, RSPH, CCDC, CFAP, [...] Read more.
The sperm flagellum is essential for male fertility. Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. MMAF phenotypes are understood to result from pathogenic variants of genes from multiple families including AKAP, DANI, DNAH, RSPH, CCDC, CFAP, TTC, and LRRC, among others. The Leucine-rich repeat protein (LRRC) family includes two members reported to cause MMAF phenotypes: Lrrc6 and Lrrc50. Despite vigorous research towards understanding the pathogenesis of MMAF-related diseases, many genes remain unknown underlying the flagellum biogenesis. Here, we found that Leucine-rich repeat containing 46 (LRRC46) is specifically expressed in the testes of adult mice, and show that LRRC46 is essential for sperm flagellum biogenesis. Both scanning electron microscopy (SEM) and Papanicolaou staining (PS) presents that the knockout of Lrrc46 in mice resulted in typical MMAF phenotypes, including sperm with short, coiled, and irregular flagella. The male KO mice had reduced total sperm counts, impaired sperm motility, and were completely infertile. No reproductive phenotypes were detected in Lrrc46−/− female mice. Immunofluorescence (IF) assays showed that LRRC46 was present throughout the entire flagella of control sperm, albeit with evident concentration at the mid-piece. Transmission electron microscopy (TEM) demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. About the important part of the Materials and Methods, SEM and PS were used to observe the typical MMAF-related irregular flagella morphological phenotypes, TEM was used to further inspect the sperm flagellum defects in ultrastructure, and IF was chosen to confirm the location of protein. Our study suggests that LRRC46 is an essential protein for sperm flagellum biogenesis, and its mutations might be associated with MMAF that causes male infertility. Thus, our study provides insights for understanding developmental processes underlying sperm flagellum formation and contribute to further observe the pathogenic genes that cause male infertility. Full article
(This article belongs to the Special Issue Sperm and Seminal Plasma: A Molecular Genetics Perspective)
Show Figures

Figure 1

9 pages, 714 KiB  
Article
Sperm Selection and Embryo Development: A Comparison of the Density Gradient Centrifugation and Microfluidic Chip Sperm Preparation Methods in Patients with Astheno-Teratozoospermia
by Cagla Guler, Sureyya Melil, Umit Ozekici, Yaprak Donmez Cakil, Belgin Selam and Mehmet Cincik
Life 2021, 11(9), 933; https://doi.org/10.3390/life11090933 - 7 Sep 2021
Cited by 16 | Viewed by 6016
Abstract
In recent years, microfluidic chip-based sperm sorting has emerged as an alternative tool to centrifugation-based conventional techniques for in vitro fertilization. This prospective study aims to compare the effects of density gradient centrifugation and microfluidic chip sperm preparation methods on embryo development in [...] Read more.
In recent years, microfluidic chip-based sperm sorting has emerged as an alternative tool to centrifugation-based conventional techniques for in vitro fertilization. This prospective study aims to compare the effects of density gradient centrifugation and microfluidic chip sperm preparation methods on embryo development in patient populations with astheno-teratozoospermia. In the study, the semen samples of the patients were divided into two groups for preparation with either the microfluidic or density gradient methods. Selected spermatozoa were then used to fertilize mature sibling oocytes and the semen parameters and embryo development on days 3 and 5 were assessed. While the density gradient group was associated with a higher sperm concentration, motility (progressive and total) was significantly higher in the microfluidic chip group. No significant differences were observed in the fertilization rates or grade 1 (G1) and grade 2 (G2) proportions of the third-day embryos. Furthermore, while the proportions of the poor, fair and good blastocysts on day 5 did not differ significantly, excellent blastocysts (indicating high-quality embryos) were observed in a significantly higher proportion of the microfluidic chip group. When compared to the classical density gradient method, the microfluidic chip sperm preparation yielded sperm with higher motility and higher quality blastocysts at day 5; in patients with astheno-teratozoospermia. Full article
(This article belongs to the Collection Male Infertility: Current Knowledge and Future Perspectives)
Show Figures

Figure 1

15 pages, 3704 KiB  
Article
Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility
by Chunyu Liu, Ying Shen, Qunshan Shen, Wen Zhang, Jiaxiong Wang, Shuyan Tang, Huan Wu, Shixiong Tian, Jiangshan Cong, Xiaojin He, Li Jin, Feng Zhang, Xiaohui Jiang and Yunxia Cao
Cells 2021, 10(7), 1594; https://doi.org/10.3390/cells10071594 - 25 Jun 2021
Cited by 12 | Viewed by 3826
Abstract
Male infertility is a multifactorial disease with a strong genetic background. Abnormal sperm morphologies have been found to be closely related to male infertility. Here, we conducted whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Two novel hemizygous mutations [...] Read more.
Male infertility is a multifactorial disease with a strong genetic background. Abnormal sperm morphologies have been found to be closely related to male infertility. Here, we conducted whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Two novel hemizygous mutations were identified in USP26, an X-linked gene preferentially expressed in the testis and encoding a deubiquitinating enzyme. These USP26 variants are extremely rare in human population genome databases and have been predicted to be deleterious by multiple bioinformatics tools. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring hemizygous USP26 variants showed a highly aberrant morphology and ultrastructure of the sperm heads and flagella. Real-time quantitative PCR and immunoblotting assays revealed obviously reduced levels of USP26 mRNA and protein in the spermatozoa from men harboring hemizygous deleterious variants of USP26. Furthermore, intracytoplasmic sperm injections performed on infertile men harboring hemizygous USP26 variants achieved satisfactory outcomes. Overall, our study demonstrates that USP26 is essential for normal sperm morphogenesis, and hemizygous USP26 mutations can induce X-linked asthenoteratozoospermia. These findings will provide effective guidance for the genetic and reproductive counseling of infertile men with asthenoteratozoospermia. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

18 pages, 4242 KiB  
Article
Dysregulation of the Acrosome Formation Network by 8-oxoguanine (8-oxoG) in Infertile Sperm: A Case Report with Advanced Techniques
by Sung Woo Kim, Bongki Kim, Jongsoo Mok, Eun Seo Kim and Joonghoon Park
Int. J. Mol. Sci. 2021, 22(11), 5857; https://doi.org/10.3390/ijms22115857 - 30 May 2021
Cited by 4 | Viewed by 3333
Abstract
8-Hydroxyguanine (8-oxoG) is the most common oxidative DNA lesion and unrepaired 8-oxoG is associated with DNA fragmentation in sperm. However, the molecular effects of 8-oxoG on spermatogenesis are not entirely understood. Here, we identified one infertile bull (C14) due to asthenoteratozoospermia. We compared [...] Read more.
8-Hydroxyguanine (8-oxoG) is the most common oxidative DNA lesion and unrepaired 8-oxoG is associated with DNA fragmentation in sperm. However, the molecular effects of 8-oxoG on spermatogenesis are not entirely understood. Here, we identified one infertile bull (C14) due to asthenoteratozoospermia. We compared the global concentration of 8-oxoG by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), the genomic distribution of 8-oxoG by next-generation sequencing (OG-seq), and the expression of sperm proteins by 2-dimensional polyacrylamide gel electrophoresis followed by peptide mass fingerprinting (2D-PAGE/PMF) in the sperm of C14 with those of a fertile bull (C13). We found that the average levels of 8-oxoG in C13 and C14 sperm were 0.027% and 0.044% of the total dG and it was significantly greater in infertile sperm DNA (p = 0.0028). Over 81% of the 8-oxoG loci were distributed around the transcription start site (TSS) and 165 genes harboring 8-oxoG were exclusive to infertile sperm. Functional enrichment and network analysis revealed that the Golgi apparatus was significantly enriched with the products from 8-oxoG genes of infertile sperm (q = 2.2 × 10−7). Proteomic analysis verified that acrosome-related proteins, including acrosin-binding protein (ACRBP), were downregulated in infertile sperm. These preliminary results suggest that 8-oxoG formation during spermatogenesis dysregulated the acrosome-related gene network, causing structural and functional defects of sperm and leading to infertility. Full article
(This article belongs to the Special Issue Advanced Techniques in Reproductive Medicine Research)
Show Figures

Figure 1

Back to TopTop