Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = arenobufagin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8436 KiB  
Article
Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87
by Bo Yuan, Jingmei Li, Shin-Ich Miyashita, Hidetomo Kikuchi, Meiyan Xuan, Hirokazu Matsuzaki, Naohiro Iwata, Shinya Kamiuchi, Katsuyoshi Sunaga, Takeshi Sakamoto, Yasuhide Hibino and Mari Okazaki
Molecules 2022, 27(19), 6577; https://doi.org/10.3390/molecules27196577 - 4 Oct 2022
Cited by 8 | Viewed by 2167
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. [...] Read more.
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood–brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma. Full article
(This article belongs to the Special Issue Novel Anti-cancer Lead Compounds)
Show Figures

Figure 1

9 pages, 829 KiB  
Article
Acaricidal Activity of Bufadienolides Isolated from Drimia pancration against Tetranychus urticae, and Structural Elucidation of Arenobufagin-3-O-α-L-rhamnopyranoside
by Natale Badalamenti, Maurizio Bruno, Roman Pavela, Filippo Maggi, Oliviero Marinelli, Laura Zeppa, Giovanni Benelli and Angelo Canale
Plants 2022, 11(13), 1629; https://doi.org/10.3390/plants11131629 - 21 Jun 2022
Cited by 9 | Viewed by 2345
Abstract
Chemical characterization of the bulbs of Drimia pancration was conducted to isolate four steroidal saponins (14). Earlier, we focused on the structural elucidation of compounds 13. Herein, by means of 1H-NMR, 13C-NMR, Nuclear Overhauser [...] Read more.
Chemical characterization of the bulbs of Drimia pancration was conducted to isolate four steroidal saponins (14). Earlier, we focused on the structural elucidation of compounds 13. Herein, by means of 1H-NMR, 13C-NMR, Nuclear Overhauser Effects (NOE), and 2D-NMR spectra, the full stereochemical structure of 4 is reported, and all the 1H and 13C signals are assigned. Compounds 14 were tested for their acaricidal properties against the two-spotted spider mite Tetranychus urticae. Our results showed excellent activity of compound 1, with an LD50 (µg/cm2) of 0.29 and a LD90 (µg/cm2) of 0.96, whereas compounds 2, 3, and 4 showed moderate activity. Furthermore, the acaricidal and cytotoxic properties of the crude extract were also investigated. Of note, after 96 h of exposure, the acaricidal activity of compound 1 was higher than that of the positive control, hexythiazox. Indeed, for compound 1, LD50 and LD90 were 0.29 and 0.96 µg/cm2, respectively, while hexythiazox LD50(90) was 18.7 (132.5) µg/cm2. Additionally, D. pancration extract, after 72 h, induced a high cytotoxic effect in HaCaT and THP-1 cell lines, with an IC50 of 7.37 ± 0.5 µg/mL and 3.50 ± 0.15 µg/mL, respectively. Overall, D. pancration can be considered as a green source of novel acaricides effective against mites of agricultural importance, such as T. urticae, pending proper field validation and the assessment of non-target effects on other invertebrate species. Full article
(This article belongs to the Special Issue Insecticidal Activity of Plant Secondary Metabolites)
Show Figures

Figure 1

16 pages, 3198 KiB  
Article
Identification of Antitumor Constituents in Toad Venom by Spectrum-Effect Relationship Analysis and Investigation on Its Pharmacologic Mechanism
by Ji-Heng Wu, Yue-Ting Cao, Hong-Ye Pan and Long-Hu Wang
Molecules 2020, 25(18), 4269; https://doi.org/10.3390/molecules25184269 - 18 Sep 2020
Cited by 23 | Viewed by 3665
Abstract
(1) Background: Toad venom (Bufonis Venenum, known as ‘Chansu’ in Chinese), the secretion of the ear-side gland and skin gland of Bufo gargarizans cantor or Duttaphrynus melanostictus Schneider, has been utilized to treat several diseases in China for thousands of years. However, due [...] Read more.
(1) Background: Toad venom (Bufonis Venenum, known as ‘Chansu’ in Chinese), the secretion of the ear-side gland and skin gland of Bufo gargarizans cantor or Duttaphrynus melanostictus Schneider, has been utilized to treat several diseases in China for thousands of years. However, due to the chemical variability of the components, systematic chemical composition and the key pharmacophores in toad venom have not yet fully understood. Besides, it contains a variety of effective compounds with different physiological activity and chemotypes, mainly including alkaloids, bufogenins, bufotoxins, and so on. The recent pharmacological researches have demonstrated that several bufogenins have remarkable pharmacological effects, such as anti-inflammatory, analgesic effects, and anti-tumor effects. Aim of the study: To identify the bioactive compounds and pharmacophores originating from toad venom based on analyzing spectrum-effect relationship by chemometrics and to explore the anti-cancer mechanism primarily. (2) Materials and methods: Fingerprint of the 21 batches of samples was established using HPLC (High Performance Liquid Chromatography). The anti-tumor activity of extracts were determined by in-vitro assays. Chemometric analysis was used to establish the spectrum-effect model and screen for active ingredients. Pharmacodynamic tests for the screened active compound monomers were conducted with in-vitro assays. Further anti-tumor mechanisms were investigated using western blot and flow cytometry. (3) Results: The established spectrum-effect model has satisfactory fitting effect and predicting accuracy. The inhibitory effect of major screened compounds on lung carcinoma cells A549 were validated in vitro, demonstrating that arenobufagin, telocinobufogenin, and cinobufotalin had significant anti-tumor effects. Through further investigation of the mechanism by western blotting and flow cytometry, we elucidated that arenobufagin induces apoptosis in A549 cells with the enhanced expression of cleaved PARP (poly (ADP-ribose) polymerase). These results may provide valuable information for further structural modification of bufadienolides to treat lung cancer and a method for discovery of anti-tumor active compounds. Conclusions: Our research offers a more scientific method for screening the principal ingredients dominating the pharmacodynamic function. These screened compounds (arenobufagin, etc.) were proven to induce apoptosis by overactivation of the PARP-pathway, which may be utilized to make BRCA (breast cancer susceptibility gene) mutant cancer cells more vulnerable to DNA damaging agents and kill them. Full article
Show Figures

Graphical abstract

12 pages, 6265 KiB  
Article
Arenobufagin Induces Apoptotic Cell Death in Human Non-Small-Cell Lung Cancer Cells via the Noxa-Related Pathway
by Liang Ma, Yindi Zhu, Sheng Fang, Hongyan Long, Xiang Liu and Zi Liu
Molecules 2017, 22(9), 1525; https://doi.org/10.3390/molecules22091525 - 11 Sep 2017
Cited by 29 | Viewed by 5584
Abstract
Arenobufagin, an active component isolated from the traditional Chinese medicine Chan Su, exhibits anticancer influences in several human malignancies. However, the effects and action mechanisms of arenobufagin on non-small-cell lung cancer (NSCLC) are still unknown. In this study, we reported that arenobufagin acted [...] Read more.
Arenobufagin, an active component isolated from the traditional Chinese medicine Chan Su, exhibits anticancer influences in several human malignancies. However, the effects and action mechanisms of arenobufagin on non-small-cell lung cancer (NSCLC) are still unknown. In this study, we reported that arenobufagin acted through activation of Noxa-related pathways and promoted apoptotic cell death in human NSCLC cells. Our results revealed that arenobufagin-induced apoptosis was caspase-dependent, as evidenced by the fact that caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) were cleaved, and pretreatment with a pan-caspase inhibitor Z-VAD-FMK inhibited the pro-apoptosis effect of arenobufagin. Mechanistically, we further found that arenobufagin rapidly upregulated the expression of the pro-apoptosis protein Noxa, and abrogated the anti-apoptosis protein Mcl-1, a major binding partner of Noxa in the cell. More importantly, the knockdown of Noxa greatly blocked arenobufagin-induced cell death, highlighting the contribution of this protein in the anti-NSCLC effects of arenobufagin. Interestingly, arenobufagin also increased the expression of p53, a direct transcriptional activator for the upregulation of the Noxa protein. Taken together, our results suggest that arenobufagin is a potential anti-NSCLC agent that triggers apoptotic cell death in NSCLC cells through interfering with the Noxa-related pathway. Full article
(This article belongs to the Collection Natural Products: Anticancer Potential and Beyond)
Show Figures

Graphical abstract

23 pages, 1131 KiB  
Article
Qualitative and Quantitative Analysis of the Major Constituents in Shexiang Tongxin Dropping Pill by HPLC-Q-TOF-MS/MS and UPLC-QqQ-MS/MS
by Daxin Chen, Shan Lin, Wen Xu, Mingqing Huang, Jianfeng Chu, Fei Xiao, Jiumao Lin and Jun Peng
Molecules 2015, 20(10), 18597-18619; https://doi.org/10.3390/molecules201018597 - 14 Oct 2015
Cited by 61 | Viewed by 8989
Abstract
Shexiang Tongxin dropping pill (STP) is a traditional Chinese medicine formula that consists of total saponins of ginseng, synthetic Calculus bovis, bear gall, Venenum bufonis, borneol and Salvia miltiorrhiza. STP has been widely used in China and Southeast Asia for [...] Read more.
Shexiang Tongxin dropping pill (STP) is a traditional Chinese medicine formula that consists of total saponins of ginseng, synthetic Calculus bovis, bear gall, Venenum bufonis, borneol and Salvia miltiorrhiza. STP has been widely used in China and Southeast Asia for the treatment of cardiovascular diseases. In this study, a qualitative analytical method using high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed for identification of the major constituents in STP. Based on the retention time and MS spectra, 41 components were identified by comparison with reference compounds and literature data. Moreover, using ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry in multiple-reaction monitoring mode, we quantified 13 of the identified constituents (ginsenoside Rg1, ginsenoside Rk3, cinobufagin, arenobufagin, bufalin, resibufogenin, tanshinone IIA, taurine, tauroursodeoxycholic acid, taurocholic acid, cholic acid, deoxycholic acid, and chenodeoxycholic acid). These results suggest that this new approach is applicable for the routine analysis and quality control of STP products and provides fundamental data for further in vivo pharmacokinetical studies. Full article
(This article belongs to the Section Metabolites)
Show Figures

Figure 1

Back to TopTop