Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = area under pest progress curve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3321 KiB  
Article
Characterization and Agronomic Evaluation of 25 Accessions of Chenopodium quinoa in the Peruvian Coastal Desert
by José Alania-Choque, Leander Gamiel Vásquez-Espinoza, Alberto Anculle-Arenas, José Luis Bustamente-Muñoz, Eric N. Jellen, Raymundo O. Gutiérrez-Rosales and Mayela Elizabeth Mayta-Anco
Agronomy 2024, 14(9), 1908; https://doi.org/10.3390/agronomy14091908 - 26 Aug 2024
Viewed by 1811
Abstract
Quinoa is a healthy food that possesses high levels of protein that is enriched for dietary essential amino acids. The crop is highly diverse and well-adapted to changing climatic conditions. In spite of being vulnerable to pests and diseases, the development of new [...] Read more.
Quinoa is a healthy food that possesses high levels of protein that is enriched for dietary essential amino acids. The crop is highly diverse and well-adapted to changing climatic conditions. In spite of being vulnerable to pests and diseases, the development of new resistant varieties is possible. Taking advantage of this genetic variability is crucial for breeding programs, especially to adapt quinoa to the shifting needs of producers. In this study, 25 Peruvian accessions and two commercial varieties were characterized and agronomically evaluated in the Peruvian Pacific desert. Specific methodologies and descriptors of existing crops were used, analyzing a total of 24 quantitative and 23 qualitative variables with 15 repetitions per accession. The data were processed using descriptive statistics and a multivariate analysis. The results showed a high variability in morphological characteristics, with an area under the disease progress curve (AUDPC) of the presence of mildew between 529 and 1725, highlighting ACC06 with a lower severity of mildew. The percentage of saponins varied between 0.04 and 0.21 percent, with ACC06 being the one with the lowest percentage. Regarding the crop yield, it ranged between 0.35 and 8.80 t ha−1, highlighting the high-yielding accessions ACC55 and ACC14. These results were promising for the improvement of quinoa yield in the production conditions of the Peruvian Pacific desert. Full article
Show Figures

Figure 1

15 pages, 1455 KiB  
Article
Infection Risk-Based Application of Plant Resistance Inducers for the Control of Downy and Powdery Mildews in Vineyards
by Othmane Taibi, Giorgia Fedele, Irene Salotti and Vittorio Rossi
Agronomy 2023, 13(12), 2959; https://doi.org/10.3390/agronomy13122959 - 30 Nov 2023
Cited by 6 | Viewed by 1972
Abstract
Plant resistance inducers (PRIs) are potential alternatives for controlling grapevine downy (DM) and powdery (PM) mildews in vineyards. In a 3-year field study, we evaluated the field efficacy of six commercial PRIs of chemical and natural origin against DM and PM diseases when [...] Read more.
Plant resistance inducers (PRIs) are potential alternatives for controlling grapevine downy (DM) and powdery (PM) mildews in vineyards. In a 3-year field study, we evaluated the field efficacy of six commercial PRIs of chemical and natural origin against DM and PM diseases when applied at designated vine growth stages in a mixture with low doses of copper and sulfur, and only when advised by weather-driven disease models. The disease severity and incidence were evaluated for each season at key growth stages (i.e., the end of flowering, berries pea-sized, veraison, and pre-harvest), and areas under the disease progress curves (AUDPC) were calculated and compared with those of nontreated vines. These risk-based applications resulted in a 41% and 61% reduction of interventions against DM and PM, respectively, compared to the official advice for integrated pest management in the growing area. These applications provided a disease control efficacy of 88% for DM and 93% for PM; the disease severity on bunches never exceeded 5%. Overall, when the disease severity was expressed as AUDPC, we observed higher efficacy of all the PRIs for PM, and of laminarin and cerevisane for DM. We also found that potassium phosphonate and fosetyl-Al (commonly used against DM) were effective against PM, and cos-oga (used against PM) was effective against DM. These results broaden the application and integration of PRIs in viticulture. Full article
Show Figures

Figure 1

22 pages, 6908 KiB  
Article
Fall Armyworm Infestation and Development: Screening Tropical Maize Genotypes for Resistance in Zambia
by Chapwa Kasoma, Hussein Shimelis, Mark D. Laing and Bethelihem Mekonnen
Insects 2022, 13(11), 1020; https://doi.org/10.3390/insects13111020 - 4 Nov 2022
Cited by 9 | Viewed by 5618
Abstract
Knowledge of fall armyworm (FAW) (Spodoptera frugiperda J.E. Smith) rearing, infestation and development and precision screening protocols are preconditions for the successful introgression of resistance genes into farmer-preferred varieties. We aimed to determine FAW developmental stages, screen tropical maize and select resistant [...] Read more.
Knowledge of fall armyworm (FAW) (Spodoptera frugiperda J.E. Smith) rearing, infestation and development and precision screening protocols are preconditions for the successful introgression of resistance genes into farmer-preferred varieties. We aimed to determine FAW developmental stages, screen tropical maize and select resistant lines under controlled conditions in Zambia. Field-collected FAW samples constituting 30 egg masses and 60 larvae were reared using maize leaf- and stalk-based and soy- and wheat flour-based diets at 27 ± 1 °C, 60 ± 5% relative humidity and 12 h day length. The resulting neonates were separated into sets A and B. The life cycles of set A and field-collected larvae were monitored to document the FAW developmental features. Set B neonates were used to infest the seedlings of 63 diverse tropical maize genotypes. Egg, larva, pupa and adult stages had mean durations of 2, 24, 20 and 12 days, respectively. Test maize genotypes revealed significant differences (p < 0.05) based on FAW reaction types, with lines TL13159, TL02562, TL142151, VL050120 and CML548-B exhibiting resistance reactions, while CML545-B, CZL1310c, CZL16095, EBL169550, ZM4236 and Pool 16 displayed moderate resistance. These genotypes are candidate sources of FAW resistance for further breeding. This study will facilitate controlled FAW rearing for host screening in the integration of FAW resistance into market-preferred maize lines. Full article
(This article belongs to the Collection Plant Responses to Insect Herbivores)
Show Figures

Figure 1

18 pages, 2128 KiB  
Article
Temporal Dynamics of Incidence of Shot Hole Disease Affected by Training Systems and Cultivar Susceptibilities in an Integrated Plum Orchard
by Bianka Molnár, Szilárd Szabó and Imre J. Holb
J. Fungi 2022, 8(6), 580; https://doi.org/10.3390/jof8060580 - 28 May 2022
Cited by 4 | Viewed by 2228
Abstract
Shot hole disease (SHD) can cause severe epidemics in plum orchards, depending on cultivar susceptibility and training system; however, the combined effect on the progress of temporal disease and on the possible reduction in SHD in the disease management was not investigated. The [...] Read more.
Shot hole disease (SHD) can cause severe epidemics in plum orchards, depending on cultivar susceptibility and training system; however, the combined effect on the progress of temporal disease and on the possible reduction in SHD in the disease management was not investigated. The aim of this 3-year study was (i) to monitor and analyze the temporal dynamics of SHD progress under four training systems (4 × 1.5, 4 × 2, 5 × 2.5 and 6 × 3 m) and on four plum cultivars (‘Čačanska lepotica’, ‘Bluefre’, ‘Stanley’ and ‘President’) in an integrated plum orchard; (ii) to identify those time periods when training system and cultivar combinations can reduce the disease development. Both SHD incidences and the area under the disease progress curves (AUDPC) were significantly affected by the training system, cultivar and year. Plum cultivars with high or mid–high susceptibility to SHD showed continuous SHD development from May to November, while cultivars with low susceptibility to SHD showed no symptoms until mid-summer and then progressed slowly until November. High (4 × 1.5 m) vs. low (6 × 3 m) density training systems reduced SHD incidence and AUDPC consistently for three cultivars (‘Čačanska lepotica’, ‘Stanley’ and ‘President’) in September, October and November, compared to the high-density training system. Only cv. ‘Bluefre’ showed no effect either on disease incidence or AUDPC, due to very high disease incidences in all training systems from September to November. In conclusions, combinations of training system and cultivar can significantly reduce SHD incidence, which may be successfully used as a part of the integrated pest management approach during the establishment new plantations. Full article
Show Figures

Figure 1

23 pages, 3507 KiB  
Article
A General Model for the Effect of Crop Management on Plant Disease Epidemics at Different Scales of Complexity
by Elisa González-Domínguez, Giorgia Fedele, Francesca Salinari and Vittorio Rossi
Agronomy 2020, 10(4), 462; https://doi.org/10.3390/agronomy10040462 - 26 Mar 2020
Cited by 12 | Viewed by 7198
Abstract
A general and flexible model was developed to simulate progress over time of the epidemics caused by a generic polycyclic pathogen on aerial plant parts. The model includes all of the epidemiological parameters involved in the pathogen life cycle: between-season survival, production of [...] Read more.
A general and flexible model was developed to simulate progress over time of the epidemics caused by a generic polycyclic pathogen on aerial plant parts. The model includes all of the epidemiological parameters involved in the pathogen life cycle: between-season survival, production of primary inoculum, occurrence of primary infections, production and dispersal of secondary inoculum both inside and outside the crop, and concatenation of secondary infection cycles during the host’s growing season. The model was designed to include the effect of the main crop management actions that affect disease levels in the crop. Policy-oriented, strategic, and tactical actions were considered at the different levels of complexity (from the agro-ecosystem to the farming and cropping system). All effects due to disease management actions were translated into variations in the epidemiological components of the model, and the model quantitatively simulates the effect of these actions on epidemic development, expressed as changes in final disease and in the area under the disease progress curve. The model can help researchers, students and policy makers understand how management decisions (especially those commonly recommended as part of Integrated Pest Management programs) will affect plant disease epidemics at different scales of complexity. Full article
Show Figures

Figure 1

17 pages, 2744 KiB  
Article
Development and Evaluation of a Leaf Disease Damage Extension in Cropsim-CERES Wheat
by Georg Röll, William D. Batchelor, Ana Carolina Castro, María Rosa Simón and Simone Graeff-Hönninger
Agronomy 2019, 9(3), 120; https://doi.org/10.3390/agronomy9030120 - 2 Mar 2019
Cited by 8 | Viewed by 4571
Abstract
Developing disease models to simulate and analyse yield losses for various pathogens is a challenge for the crop modelling community. In this study, we developed and tested a simple method to simulate septoria tritici blotch (STB) in the Cropsim-CERES Wheat model studying the [...] Read more.
Developing disease models to simulate and analyse yield losses for various pathogens is a challenge for the crop modelling community. In this study, we developed and tested a simple method to simulate septoria tritici blotch (STB) in the Cropsim-CERES Wheat model studying the impacts of damage on wheat (Triticum aestivum L.) yield. A model extension was developed by adding a pest damage module to the existing wheat model. The module simulates the impact of daily damage on photosynthesis and leaf area index. The approach was tested on a two-year dataset from Argentina with different wheat cultivars. The accuracy of the simulated yield and leaf area index (LAI) was improved to a great extent. The Root mean squared error (RMSE) values for yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI (0.69 m2 m−2). In addition, a sensitivity analysis of different disease progress curves on leaf area index and yield was performed using a dataset from Germany. The sensitivity analysis demonstrated the ability of the model to reduce yield accurately in an exponential relationship with increasing infection levels (0–70%). The extended model is suitable for site specific simulations, coupled with for example, available remote sensing data on STB infection. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Agriculture and Crop Modelling)
Show Figures

Figure 1

Back to TopTop