Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = aragonite (110) surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7565 KiB  
Article
Heterogeneous Nucleation and Growth of CaCO3 on Calcite (104) and Aragonite (110) Surfaces: Implications for the Formation of Abiogenic Carbonate Cements in the Ocean
by Hongmei Tang, Xiao Wu, Haiyang Xian, Jianxi Zhu, Jingming Wei, Hongmei Liu and Hongping He
Minerals 2020, 10(4), 294; https://doi.org/10.3390/min10040294 - 25 Mar 2020
Cited by 10 | Viewed by 4669
Abstract
Although near-surface seawater is supersaturated with CaCO3, only a minor part of it is abiogenic (e.g., carbonate cements). The possible reason for such a phenomenon has attracted much attention in the past decades. Substrate effects on the heterogeneous nucleation and growth [...] Read more.
Although near-surface seawater is supersaturated with CaCO3, only a minor part of it is abiogenic (e.g., carbonate cements). The possible reason for such a phenomenon has attracted much attention in the past decades. Substrate effects on the heterogeneous nucleation and growth of CaCO3 at various Mg2+/Ca2+ ratios may contribute to the understanding of the origin of abiogenic CaCO3 cements. Here, we used in situ atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy to study the heterogeneous nucleation and growth of CaCO3 on both calcite (104) and aragonite (110) surfaces. The results show that (1) calcite spiral growth occurs on calcite (104) surfaces by monomer-by-monomer addition; (2) the aggregative growth of aragonite appears on aragonite (110) surfaces through a substrate-controlled oriented attachment (OA) along the [001] direction, followed by the formation of elongated columnar aragonite; and (3) Mg2+ inhibits the crystallization of both calcite and aragonite without impacting on crystallization pathways. These findings disclose that calcite and aragonite substrates determine the crystallization pathways, while the Mg2+/Ca2+ ratios control the growth rate of CaCO3, indicating that both types of CaCO3 substrate in shallow sediments and aqueous Mg2+/Ca2+ ratios constrain the deposition of abiogenic CaCO3 cements in the ocean. Full article
Show Figures

Figure 1

11 pages, 2835 KiB  
Article
Treatment of Simulated Coalbed Methane Produced Water Using Direct Contact Membrane Distillation
by Dong-Wan Cho, Hocheol Song, Kwangsuk Yoon, Sewoon Kim, Jeongmin Han and Jinwoo Cho
Water 2016, 8(5), 194; https://doi.org/10.3390/w8050194 - 10 May 2016
Cited by 12 | Viewed by 7896
Abstract
Expolitation of coalbed methane (CBM) involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD) was utilized for treatment of CBM-produced water to remove saline components in the [...] Read more.
Expolitation of coalbed methane (CBM) involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD) was utilized for treatment of CBM-produced water to remove saline components in the water. Simulated CBM waters containing varying concentrations of NaCl (1, 20, and 500 mM) and NaHCO3 (1 and 25 mM) were used as feed solutions under two transmembrane temperatures (Δ40 and 60 °C). In short-term distillation (~360 min), DCMD systems showed good performance with nearly 100% removal of salts for all solutes concentrations at both temperatures. The permeate flux increased with the feed temperature, but at a given temperature, it remained fairly stable throughout the whole operation. A gradual decline in permeate flux was observed at Δ60 °C at high NaHCO3 concentration (25 mM). In long-term distillation (5400 min), the presence of 25 mM NaHCO3 further decreased the flux to 25%–35% of the initial value toward the end of the operation, likely due to membrane fouling by deposition of Ca-carbonate minerals on the pore openings. Furthermore, pore wetting by the scalants occurred at the end of the experiment, and it increased the distillate conducitivity to 110 µS·cm−1. The precipitates formed on the surface were dominantly CaCO3 crystals, identified as aragonite. Full article
Show Figures

Figure 1

Back to TopTop