Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = aperiodic mineral structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
60 pages, 13465 KB  
Review
Order–Disorder Diversity of the Solid State by NMR: The Role of Electrical Charges
by Luis Sánchez-Muñoz, Pierre Florian, Zhehong Gan and Francisco Muñoz
Minerals 2022, 12(11), 1375; https://doi.org/10.3390/min12111375 - 29 Oct 2022
Cited by 3 | Viewed by 3230
Abstract
The physical explanations and understanding of the order–disorder phenomena in the solid state are commonly inferred from the experimental capabilities of the characterization techniques. Periodicity is recorded according to the averaging procedure of the conventional reciprocal-space techniques (RSTs) in many solids. This approach [...] Read more.
The physical explanations and understanding of the order–disorder phenomena in the solid state are commonly inferred from the experimental capabilities of the characterization techniques. Periodicity is recorded according to the averaging procedure of the conventional reciprocal-space techniques (RSTs) in many solids. This approach gives rise to a sharp trimodal view including non-crystalline or amorphous compounds, aperiodic crystals and periodic crystals. However, nuclear magnetic resonance (NMR) spectroscopy offers an alternative approach that is derived from the distinct character of the measurements involved at the local scale. Here, we present a sequence of progressive order–disorder states, from amorphous structures up to fully ordered mineral structures, showing the great diversity existing in the solid state using multinuclear NMR spectroscopy. Some examples in glasses and products of their crystallization are used, as well as several minerals (including beryl-group and feldspar-group minerals) at magnetic fields up to 35.2 T, and some examples from literature. This approach suggests that the solid state is a dynamic medium, whose behavior is due to atomic adjustments from local compensation of electrical charges between similar structural states, which explains Ostwald’s step rule of successive reactions. In fully ordered feldspar minerals, we propose that the electronic structure of the elements of the cavity site is involved in bonding, site morphology and feldspar topology. Furthermore, some implications are derived about what is a mineral structure from the point of view of the NMR experiments. They open the possibility for the development of the science of NMR Mineralogy. Full article
(This article belongs to the Special Issue NMR Spectroscopy in Mineralogy and Crystal Structures)
Show Figures

Figure 1

16 pages, 5926 KB  
Review
Quasicrystals and Other Aperiodic Structures in Mineralogy
by Carlos M. Pina and Victoria López-Acevedo
Crystals 2016, 6(11), 137; https://doi.org/10.3390/cryst6110137 - 27 Oct 2016
Cited by 5 | Viewed by 13363
Abstract
In this article, we first present and discuss eighteenth-century descriptions of minerals that contributed decisively to the development of crystallography. Remarkably, these old crystallographic descriptions included morphologies with symmetries incompatible with an internal periodic order of atoms, which, however, have been recognised to [...] Read more.
In this article, we first present and discuss eighteenth-century descriptions of minerals that contributed decisively to the development of crystallography. Remarkably, these old crystallographic descriptions included morphologies with symmetries incompatible with an internal periodic order of atoms, which, however, have been recognised to be characteristics of quasicrystals. Moreover, we also review a number of studies of minerals with aperiodic crystal structures, including recently reported natural quasicrystals of extra-terrestrial origin. Finally, we discuss the current investigations addressing the search for new quasicrystalline minerals in nature. Full article
(This article belongs to the Special Issue Structure and Properties of Quasicrystals 2016)
Show Figures

Graphical abstract

Back to TopTop