Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = antimony-germanate-borate SGB glass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2881 KiB  
Article
Nanocomposite Antimony-Germanate-Borate Glass Fibers Doped with Eu3+ Ions with Self-Assembling Silver Nanoparticles for Photonic Applications
by Jacek Zmojda, Piotr Miluski and Marcin Kochanowicz
Appl. Sci. 2018, 8(5), 790; https://doi.org/10.3390/app8050790 - 15 May 2018
Cited by 5 | Viewed by 3498
Abstract
Recently, nanocomposite glass materials embedded with silver particles and lanthanide ions have been widely investigated. The main interest is a surface plasmon resonance (SPR) phenomenon, which, as a result of nanometric particles’ interaction with external electromagnetic waves, has led to the enhancement of [...] Read more.
Recently, nanocomposite glass materials embedded with silver particles and lanthanide ions have been widely investigated. The main interest is a surface plasmon resonance (SPR) phenomenon, which, as a result of nanometric particles’ interaction with external electromagnetic waves, has led to the enhancement of rare-earth luminescence. In most works, nanoparticles are created in photonic glass by annealing for various times; however, the most discussion of this field in the literature is dedicated to the practical use of plasmonic effect in optical fibers. In this paper, the effect of silver ions on the luminescent properties of europium ions in antimony-germanate-borate (SGB) glass fibers is presented. The glass was synthesized by a standard melt-quenching technique, and glass fiber was drowned at 580 °C. The analysis of Ag+ ions content, as well as heat-treatment (hT) time, show an increase of almost 36% in emissions at 616 nm for glass fiber co-doped with 0.1Ag+/0.2Eu3+ ions after a 2 h annealing process. In the experiment, the interaction mechanism was investigated in terms of localized SPR, in each step of the glass fiber fabrication process. Moreover, we demonstrate that the self-assembling of silver nanoparticles onto a glass fiber surface is possible only for fiber co-doped with 0.6Ag/0.2Eu ions. This non-conventional, bottom-up technique of thin film was analyzed by Scanning Electron Microscopy (SEM) measurements. Full article
(This article belongs to the Special Issue Rare-Earth Doping for Optical Applications)
Show Figures

Figure 1

Back to TopTop