Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = antecrystic zircon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5093 KiB  
Article
Tracking 40 Million Years of Migrating Magmatism across the Idaho Batholith Using Zircon U-Pb Ages and Hf Isotopes from Cretaceous Bentonites
by Jeffrey S. Hannon, Craig Dietsch, Warren D. Huff and Davidson Garway
Minerals 2021, 11(9), 1011; https://doi.org/10.3390/min11091011 - 17 Sep 2021
Cited by 3 | Viewed by 2981
Abstract
Cretaceous strata preserved in Wyoming contain numerous large bentonite deposits formed from the felsic ash of volcanic eruptions, mainly derived from Idaho batholith magmatism. These bentonites preserve a near-continuous 40 m.y. chronology of volcanism and their whole-rock and mineral chemistry has been used [...] Read more.
Cretaceous strata preserved in Wyoming contain numerous large bentonite deposits formed from the felsic ash of volcanic eruptions, mainly derived from Idaho batholith magmatism. These bentonites preserve a near-continuous 40 m.y. chronology of volcanism and their whole-rock and mineral chemistry has been used to document igneous processes and reconstruct the history of Idaho magmatism as emplacement migrated across the Laurentian margin. Using LA-ICP-MS, we analyzed the U-Pb ages and Hf isotopic compositions of nearly 700 zircon grains from 44 bentonite beds from the Bighorn Basin, Wyoming. Zircon populations contain magmatic autocrysts and antecrysts which can be linked to the main pulses of the Idaho batholith and xenocrysts ranging from approx. 250 Ma to 1.84 Ga from country rocks and basement source terranes. Initial εHf compositions of Phanerozoic zircons are diverse, with compositions ranging from −26 to nearly +12. Based on temporal trends in zircon ages and geochemistry, four distinct periods of plutonic emplacement are recognized during the Mid- to Late Cretaceous that follow plutonic emplacement across the Laurentian suture zone in western Idaho and into western Montana with the onset of Farallon slab shallowing. Our data demonstrate the utility of using zircons in preserved tephra to track the regional-scale evolution of convergent margins related to terrane accretion and the spatial migration of magmatism related to changes in subduction dynamics. Full article
Show Figures

Graphical abstract

17 pages, 7659 KiB  
Article
Protracted Storage for Calc-Alkaline Andesitic Magma in Magma Chambers: Perspective from the Nageng Andesite, East Kunlun Orogen, NW China
by Xiao-Dong Chen, Bin Li, Chong-Bo Sun and Hong-Bing Zhou
Minerals 2021, 11(2), 198; https://doi.org/10.3390/min11020198 - 13 Feb 2021
Cited by 13 | Viewed by 3411
Abstract
Calc-alkaline andesitic rocks are a major product of subduction-related magmatism at convergent margins. Where these melts are originated, how long they are stored in the magma chambers, and how they evolved is still a matter of debate. In this study, we present new [...] Read more.
Calc-alkaline andesitic rocks are a major product of subduction-related magmatism at convergent margins. Where these melts are originated, how long they are stored in the magma chambers, and how they evolved is still a matter of debate. In this study, we present new data of whole-rock elemental and Sr-Nd-Pb isotope compositions, and zircon U-Pb-Th isotopes and trace element contents of Nageng (basaltic-)andesites in the East Kunlun Orogen (NW China). The similar age and whole-rock elemental and Sr-Nd-Pb isotope contents suggest that the Nageng andesite and basaltic andesite are co-magmatic. Their low initial 87Sr/86Sr (0.7084–0.7086) but negative εNd(t) values (−10.61 to −9.49) are consistent with a magma source from the juvenile mafic lower crust, possibly related to the mantle wedge with recycled sediment input. The U-Pb age gap between the zircon core (ca. 248 Ma) and rim (ca. 240 Ma) reveals a protracted magma storage (~8 Myr) prior to the volcanic eruption. When compared to the zircon rims, the zircon cores have higher Ti content and Zr/Hf and Nb/Ta ratios, but lower Hf content and light/heavy rare earth element ratios, which suggests that the parental magma was hotter and less evolved than the basaltic andesite. The plagioclase accumulation likely resulted in Al2O3-enrichment and Fe-depletion, forming the calc-alkaline signature of the Nageng (basaltic-)andesites. The magma temperature, as indicated by the zircon saturation and Ti-in-zircon thermometry, remained low (725–828 °C), and allowed for the magma chamber to survive over ~8 Myr. The decreasing εHf(t) values from zircon core (avg. 0.21, range: −1.28 to 1.32) to rim (avg. −3.68, range: −7.30 to −1.13), together with the presence of some very old xenocrystic zircons (268–856 Ma), suggest that the magma chamber had undergone extensive crustal contamination. Full article
Show Figures

Figure 1

18 pages, 4837 KiB  
Article
Towards Identification of Zircon Populations in Permo-Carboniferous Rhyolites of Central Europe: Insight from Automated SEM-Mineral Liberation Analyses
by Arkadiusz Przybyło, Anna Pietranik, Bernhard Schulz and Christoph Breitkreuz
Minerals 2020, 10(4), 308; https://doi.org/10.3390/min10040308 - 30 Mar 2020
Cited by 5 | Viewed by 3468
Abstract
Zircon is a main mineral used for dating rhyolitic magmas as well as reconstructing their differentiation. It is common that different populations of zircon grains occur in a single rhyolitic sample. The presence of both autocrystic and antecrystic zircon grains is reflected in [...] Read more.
Zircon is a main mineral used for dating rhyolitic magmas as well as reconstructing their differentiation. It is common that different populations of zircon grains occur in a single rhyolitic sample. The presence of both autocrystic and antecrystic zircon grains is reflected in their strongly varied chemical compositions and slight spread of ages. However, postmagmatic processes may induce lead loss, which is also recorded as a spread of zircon ages. Therefore, new approaches to identify different zircon populations in rhyolitic rocks are needed. In this study, we suggest that detailed examination of zircon positions in the thin sections of rhyolitic rocks provides valuable information on zircon sources that can be used to identify autocrystic and antecrystic zircon populations. Automated Scanning Electron Microscope (SEM) analyses are of great applicability in determining this, as they return both qualitative and quantitative information and allow for quick comparisons between different rhyolite localities. Five localities of Permo-Carboniferous rhyolites related to post-Variscan extension in Central Europe (Organy, Bieberstein, Halle, Chemnitz, Krucze) were analyzed by automated SEM (MLA-SEM). The samples covered a range of Zr whole rock contents and displayed both crystalline and glassy groundmass. Surprisingly, each locality seemed to have its own special zircon fingerprint. Based on comparisons of whole rocks, modal composition and SEM images Chemnitz ignimbrite was interpreted as containing mostly (or fully) antecrystic zircon, whereas the Bieberstein dyke was shown to possibly contain both types, with the antecrystic zircon being associated with disturbed cumulates. On the other hand, Organy was probably dominated by autocrystic zircon, and Krucze contained dismembered, subhedral zircon in its matrix, whereas Halle zircon was located partly in late veins, filling cracks in laccolith. Both localities may, therefore, contain zircon populations that represent later stages than the crystallization of the main rhyolitic body. Full article
(This article belongs to the Special Issue Accessory Minerals in Silicic Igneous Rocks)
Show Figures

Figure 1

Back to TopTop