Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ant colony metaphor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 774 KiB  
Article
Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing
by Qing-Hao Meng, Wei-Xing Yang, Yang Wang, Fei Li and Ming Zeng
Sensors 2012, 12(4), 4737-4763; https://doi.org/10.3390/s120404737 - 12 Apr 2012
Cited by 49 | Viewed by 8776
Abstract
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization [...] Read more.
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop