Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = and spectrum assignment (RMCSA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1467 KiB  
Article
Crosstalk Classification Based on Synthetically Consider Crosstalk and Fragmentation RMCSA in Multi-Core Fiber-Based EONs
by Yanbo Chen, Nan Feng, Yue Zhou, Danping Ren and Jijun Zhao
Photonics 2023, 10(3), 340; https://doi.org/10.3390/photonics10030340 - 22 Mar 2023
Cited by 5 | Viewed by 1827
Abstract
Space division multiplexing elastic optical networks (SDM-EONs) based on multi-core fiber (MCF) technologies have attracted widespread attention as a potential means of enhancing large capacity and high flexibility. However, inter-core crosstalk (XT) degrades the quality of transmission. The algorithm for minimizing XT leads [...] Read more.
Space division multiplexing elastic optical networks (SDM-EONs) based on multi-core fiber (MCF) technologies have attracted widespread attention as a potential means of enhancing large capacity and high flexibility. However, inter-core crosstalk (XT) degrades the quality of transmission. The algorithm for minimizing XT leads to an increase in spectrum fragmentation in the lightpath, which influences the spectrum utilization. Therefore, the question of how to comprehensively consider the two factors and improve the network performance is an issue worthy of study. This paper focuses on maximizing spectrum resource utilization while satisfying the XT constraints. Firstly, we optimize a three-dimensional metric model to evaluate XT and fragmentation more exactly in SDM-EONs. Furthermore, a crosstalk classification (CC) algorithm, which can adjust the XT constraints according to the actual situation of the network, is proposed. Moreover, to match the CC algorithm, we describe the crosstalk and fragmentation in the network and propose a synthetically consider crosstalk and fragmentation (SCCF) algorithm. Finally, simulation results show that the proposed CC-SCCF routing, modulation, core, and spectrum allocation algorithm reduces the XT on existing lightpaths, and also provides a lower probability of blocking and greater spectrum utilization. Full article
Show Figures

Figure 1

Back to TopTop