Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = and choline-deficient diet (MCDD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2217 KB  
Article
Time-Restricted Feeding Ameliorates Methionine–Choline Deficient Diet-Induced Steatohepatitis in Mice
by Ik-Rak Jung, Rexford S. Ahima and Sangwon F. Kim
Int. J. Mol. Sci. 2024, 25(3), 1390; https://doi.org/10.3390/ijms25031390 - 23 Jan 2024
Cited by 5 | Viewed by 4829
Abstract
Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect [...] Read more.
Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 1422 KB  
Article
The Ethanol Extract from Lonicera japonica Thunb. Regresses Nonalcoholic Steatohepatitis in a Methionine- and Choline-Deficient Diet-Fed Animal Model
by Thing-Fong Tzeng, Yu-Cheng Tzeng, Yu-Jou Cheng, Shorong-Shii Liou and I-Min Liu
Nutrients 2015, 7(10), 8670-8684; https://doi.org/10.3390/nu7105423 - 21 Oct 2015
Cited by 28 | Viewed by 7208
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized as fat accumulation in the hepatic tissue associated with various degrees of inflammation and progressive fibrosis. The potent anti-inflammatory and ethnopharmacological properties of Lonicera japonica Thunb. (Caprifoliaceae) make it an excellent source of novel medicinal targets for the [...] Read more.
Nonalcoholic steatohepatitis (NASH) is characterized as fat accumulation in the hepatic tissue associated with various degrees of inflammation and progressive fibrosis. The potent anti-inflammatory and ethnopharmacological properties of Lonicera japonica Thunb. (Caprifoliaceae) make it an excellent source of novel medicinal targets for the treatment of NASH. The aim of the study was to investigate the effects of L. japonica ethanol extract (LJEE) on NASH in mice. C57BL/6J mice were fed with methionine-choline-deficient diet (MCDD) for eight weeks to promote the development of NASH. After development of the model, the mice were administered LJEE once daily via oral gavage at doses of 100, 200, or 300 mg/kg for another four weeks. Simultaneous treatments with LJEE (300 mg/kg/day) resulted in pronounced improvements in liver steatosis, ballooning degeneration, and inflammation. LJEE prevented MCDD-induced plasma level increases in aspartate aminotransferase and alanine aminotransferase. LJEE significantly reduced hepatic malondialdehyde level and ameliorated hepatic inflammation and fibrosis in MCDD-fed mice, which were associated with down-regulation of cytochrome P450 2E1 suppression of multiple proinflammatory and profibrotic genes. LJEE can prevent hepatic steatosis by reducing hepatic peroxisome acyl-CoA:diacylglycerol acyltransferase 2 expression, as well as by inducing proliferator-activated receptor α expression. In addition, the LJEE treatments caused significant reduction in the phosphorylated form of Jun N-terminal kinase along with an increase in the phosphorylated level of extra cellular signal-regulated kinase 1/2. Our study demonstrated the protective role of LJEE in ameliorating nutritional steatohepatitis. Full article
Show Figures

Figure 1

Back to TopTop