Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = allopurinol-induced severe cutaneous adverse reactions (SCARs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5105 KB  
Article
WGCNA-Based DNA Methylation Profiling Analysis on Allopurinol-Induced Severe Cutaneous Adverse Reactions: A DNA Methylation Signature for Predisposing Drug Hypersensitivity
by Lin Cheng, Bao Sun, Yan Xiong, Lei Hu, Lichen Gao, Ji Li, Hongfu Xie, Xiaoping Chen, Wei Zhang and Hong-Hao Zhou
J. Pers. Med. 2022, 12(4), 525; https://doi.org/10.3390/jpm12040525 - 24 Mar 2022
Cited by 7 | Viewed by 3850
Abstract
Background: The role of aberrant DNA methylation in allopurinol-induced severe cutaneous adverse reactions (SCARs) is incompletely understood. To fill the gap, we analyze the DNA methylation profiling in allopurinol-induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) patients and identify the DNA methylation [...] Read more.
Background: The role of aberrant DNA methylation in allopurinol-induced severe cutaneous adverse reactions (SCARs) is incompletely understood. To fill the gap, we analyze the DNA methylation profiling in allopurinol-induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) patients and identify the DNA methylation signature for predisposing allopurinol hypersensitivity. Methods: Genome-scale methylation analysis was conducted using the Illumina® HumanMethylation450 BeadChip. Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to analyze the data. Results: A total of 21,497 annotated promoter regions were analyzed. Ten modules were identified between allopurinol hypersensitivity and tolerance, with turquoise and yellow modules being the most significant correlation. ATG13, EPM2AIP1, and SRSF11 were the top three hub genes in the turquoise module. MIR412, MIR369, and MIR409 were the top three hub genes in the yellow module. Gene Ontology (GO) analysis revealed that the turquoise module was related to the metabolic process in intracellular organelles and the binding of various compounds, proteins, or nucleotides. The yellow module, however, was related to stimulus sensory perception in cytoskeletal elements and the activity of the receptor or transducer. Conclusion: DNA methylation plays a vital role in allopurinol-induced SCARs. DNA methylation profiling of SJS/TEN is significantly related to autophagy and microRNAs (miRNAs). Full article
Show Figures

Figure 1

19 pages, 2180 KB  
Review
Critical Review of Gaps in the Diagnosis and Management of Drug-Induced Liver Injury Associated with Severe Cutaneous Adverse Reactions
by Marina Villanueva-Paz, Hao Niu, Antonio Segovia-Zafra, Inmaculada Medina-Caliz, Judith Sanabria-Cabrera, M. Isabel Lucena, Raúl J. Andrade and Ismael Alvarez-Alvarez
J. Clin. Med. 2021, 10(22), 5317; https://doi.org/10.3390/jcm10225317 - 15 Nov 2021
Cited by 3 | Viewed by 4674
Abstract
Drug-induced liver injury (DILI) encompasses the unexpected damage that drugs can cause to the liver. DILI may develop in the context of an immunoallergic syndrome with cutaneous manifestations, which are sometimes severe (SCARs). Nevirapine, allopurinol, anti-epileptics, sulfonamides, and antibiotics are the most frequent [...] Read more.
Drug-induced liver injury (DILI) encompasses the unexpected damage that drugs can cause to the liver. DILI may develop in the context of an immunoallergic syndrome with cutaneous manifestations, which are sometimes severe (SCARs). Nevirapine, allopurinol, anti-epileptics, sulfonamides, and antibiotics are the most frequent culprit drugs for DILI associated with SCARs. Interestingly, alleles HLA-B*58:01 and HLA-A*31:01 are associated with both adverse reactions. However, there is no consensus about the criteria used for the characterization of liver injury in this context, and the different thresholds for DILI definition make it difficult to gain insight into this complex disorder. Moreover, current limitations when evaluating causality in patients with DILI associated with SCARs are related to the plethora of causality assessment methods and the lack of consensual complementary tools. Finally, the management of this condition encompasses the treatment of liver and skin injury. Although the use of immunomodulant agents is accepted for SCARs, their role in treating liver injury remains controversial. Further randomized clinical trials are needed to test their efficacy and safety to address this complex entity. Therefore, this review aims to identify the current gaps in the definition, diagnosis, prognosis, and management of DILI associated with SCARs, proposing different strategies to fill in these gaps. Full article
(This article belongs to the Collection Clinical Research in Hepatology)
Show Figures

Figure 1

12 pages, 489 KB  
Article
Predominant HLA Alleles and Haplotypes in Mild Adverse Drug Reactions Caused by Allopurinol in Vietnamese Patients with Gout
by Chu Van Son, Nguyen Thi Hong Loan, Tran Huyen Trang, Le Xuan Thinh, Nguyen Ba Khanh, Le Thi Hong Nhung, Nguyen Van Hung, Tran Ngoc Que, Nguyen Van Lieu, Pham Dinh Tung, Nguyen Thi Van Anh and Nguyen Dinh Thang
Diagnostics 2021, 11(9), 1611; https://doi.org/10.3390/diagnostics11091611 - 3 Sep 2021
Cited by 6 | Viewed by 4726
Abstract
Allopurinol (ALP) is commonly used as a drug for gout treatment. However, ALP is known to cause cutaneous adverse reactions (CARs) in patients. The HLA-B*58:01 allele is considered a biomarker of severe CAR (SCAR) in patients with gout, with symptoms of [...] Read more.
Allopurinol (ALP) is commonly used as a drug for gout treatment. However, ALP is known to cause cutaneous adverse reactions (CARs) in patients. The HLA-B*58:01 allele is considered a biomarker of severe CAR (SCAR) in patients with gout, with symptoms of Stevens Johnson syndrome, and with toxic epidermal necrolysis. However, in patients with gout and mild cutaneous adverse drug reactions (MCARs), the role of HLA-allele polymorphisms has not been thoroughly investigated. In this study, 50 samples from ALP-tolerant patients and ALP-induced MCARs patients were genotyped in order to examine the polymorphisms of their HLA-A and HLA-B alleles. Our results showed that the frequencies of HLA-A*02:01/HLA-A*24:02 and HLA-A*02:01/HLA-A*29:01, the dual haplotypes in HLA-A, in patients with ALP-induced MCARs were relatively high, at 33.3% (7/21), which was HLA-B*58:01-independent, while the frequency of these dual haplotypes in the HLA-A locus in ALP-tolerant patients was only 3.45% (1/29). The HLA-B*58:01 allele was detected in 38% (8/21) of patients with ALP-induced MCARs, and in 3.45% (1/29) of ALP-tolerant patients. Notably, although HLA-B*58:01 may be a cause for the occurrence of MCARs in patients with gout, this correlation was not as strong as that previously reported in patients with SCAR. In conclusion, in addition to the HLA-B*58:01 allele, the presence of the dual haplotypes of HLA-A*02:01/HLA-A*24:02 and/or HLA-A*02:01/HLA-A*29:01 in the HLA-A locus may also play an important role in the appearance of ALP-induced MCARs in the Vietnamese population. The obtained primary data may contribute to the development of suitable treatments for patients with gout not only in Vietnam but also in other Asian countries. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

9 pages, 7244 KB  
Case Report
Pharmacogenomics of Allopurinol and Sulfamethoxazole/Trimethoprim: Case Series and Review of the Literature
by Ogechi Ikediobi and Jeremy A. Schneider
J. Pers. Med. 2021, 11(2), 71; https://doi.org/10.3390/jpm11020071 - 26 Jan 2021
Cited by 8 | Viewed by 6263
Abstract
Severe cutaneous adverse drug reactions (SCAR) such as the Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and drug rash with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome (DIHS) can be induced by a plethora of medications. The field of pharmacogenomics aims to prevent severe adverse drug [...] Read more.
Severe cutaneous adverse drug reactions (SCAR) such as the Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and drug rash with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome (DIHS) can be induced by a plethora of medications. The field of pharmacogenomics aims to prevent severe adverse drug reactions by using our knowledge of the inherited or acquired genetic risk of drug metabolizing enzymes, drug targets, or the human leukocyte antigen (HLA) genotype. Dermatologists are experts in the diagnosis and management of severe cutaneous adverse drug reactions (SCAR) in both the inpatient and outpatient setting. However, most dermatologists in the US have not focused on the prevention of SCAR. Therefore, this paper presents a case series and review of the literature highlighting salient examples of how dermatologists can apply pharmacogenomics in the diagnosis and especially in the prevention of SCAR induced by allopurinol and sulfamethoxazole/trimethoprim, two commonly prescribed medications. Full article
(This article belongs to the Special Issue Functional Genomics, Pharmacogenomics in Human Disease)
Show Figures

Figure 1

Back to TopTop