Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = all-fiber Fabry–Pérot interferometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7266 KiB  
Article
Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing
by Jin Qiu, Zijie Wang, Zhihong Ke, Tianlong Tao, Shuhui Liu, Quanrong Deng, Wei Huang and Weijun Tong
Sensors 2024, 24(23), 7479; https://doi.org/10.3390/s24237479 - 23 Nov 2024
Viewed by 1123
Abstract
An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as [...] Read more.
An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as a cantilever beam, which can be used as a vibration receiver. When mechanical vibrations are applied, the cavity length of the Fabry-Perot interferometer changes accordingly, altering the interference fringes. Due to the low moment of inertia of the fiber optic cantilever beam, the sensor can achieve broadband frequency responses and high vibration sensitivity without an external vibration receiver structure. The frequency range of sensor detection is 70 Hz–110 kHz, and the sensitivity of the sensor is 60 mV/V. The sensor’s signal-to-noise ratio (SNR) can reach 56 dB. The influence of the sensor parameters (cavity depth and fiber tail length) on the sensing performance are also investigated in this study. The sensor has the advantages of compact structure, high sensitivity, and wideband frequency response, which could be a promising candidate for vibration sensing. Full article
(This article belongs to the Special Issue Recent Advances in Micro- and Nanofiber-Optic Sensors)
Show Figures

Figure 1

12 pages, 5557 KiB  
Article
Ultra-High Sensitivity and Temperature-Insensitive Optical Fiber Strain Sensor Based on Dual Air Cavities
by Zhiqi Lu, Changning Liu, Chi Li, Jie Ren and Lun Yang
Materials 2023, 16(8), 3165; https://doi.org/10.3390/ma16083165 - 17 Apr 2023
Cited by 7 | Viewed by 1845
Abstract
This study proposed an all-fiber Fabry–Perot interferometer (FPI) strain sensor with two miniature bubble cavities. The device was fabricated by writing two axial, mutually close short-line structures via femtosecond laser pulse illumination to induce a refractive index modified area in the core of [...] Read more.
This study proposed an all-fiber Fabry–Perot interferometer (FPI) strain sensor with two miniature bubble cavities. The device was fabricated by writing two axial, mutually close short-line structures via femtosecond laser pulse illumination to induce a refractive index modified area in the core of a single-mode fiber (SMF). Subsequently, the gap between the two short lines was discharged with a fusion splicer, resulting in the formation of two adjacent bubbles simultaneously in a standard SMF. When measured directly, the strain sensitivity of dual air cavities is 2.4 pm/με, the same as that of a single bubble. The measurement range for a single bubble is 802.14 µε, while the measurement range for a double bubble is 1734.15 µε. Analysis of the envelope shows that the device possesses a strain sensitivity of up to 32.3 pm/με, which is 13.5 times higher than that of a single air cavity. Moreover, with a maximum temperature sensitivity of only 0.91 pm/°C, the temperature cross sensitivity could be neglected. As the device is based on the internal structure inside the optical fiber, its robustness could be guarantee. The device is simple to prepare, highly sensitive, and has wide application prospects in the field of strain measurement. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

9 pages, 2590 KiB  
Letter
Oxygen Gas Sensing with Photothermal Spectroscopy in a Hollow-Core Negative Curvature Fiber
by Yingzhen Hong, Haihong Bao, Wei Jin, Shoulin Jiang, Hoi Lut Ho, Shoufei Gao and Yingying Wang
Sensors 2020, 20(21), 6084; https://doi.org/10.3390/s20216084 - 26 Oct 2020
Cited by 14 | Viewed by 3787
Abstract
We demonstrate a compact all-fiber oxygen sensor using photothermal interferometry with a short length (4.3 cm) of hollow-core negative curvature fibers. The hollow-core fiber has double transmission windows covering both visible and near-infrared wavelength regions. Absorption of a pump laser beam at 760 [...] Read more.
We demonstrate a compact all-fiber oxygen sensor using photothermal interferometry with a short length (4.3 cm) of hollow-core negative curvature fibers. The hollow-core fiber has double transmission windows covering both visible and near-infrared wavelength regions. Absorption of a pump laser beam at 760 nm produces photothermal phase modulation and a probe Fabry-Perot interferometer operating at 1550 nm is used to detect the phase modulation. With wavelength modulation and first harmonic detection, a limit of detection down to 54 parts per million (ppm) with a 600-s averaging time is achieved, corresponding to a normalized equivalent absorption of 7.7 × 10−8 cm−1. The oxygen sensor has great potential for in situ detection applications. Full article
(This article belongs to the Collection Gas Sensors)
Show Figures

Figure 1

15 pages, 6709 KiB  
Article
Hypersonic Aerodynamic Force Balance Using Micromachined All-Fiber Fabry–Pérot Interferometric Strain Gauges
by Huacheng Qiu, Fu Min, Yanguang Yang, Zengling Ran and Jinxin Duan
Micromachines 2019, 10(5), 316; https://doi.org/10.3390/mi10050316 - 11 May 2019
Cited by 10 | Viewed by 3863
Abstract
This paper presents high-sensitivity, micromachined all-fiber Fabry–Pérot interferometric (FFPI) strain gauges and their integration in a force balance for hypersonic aerodynamic measurements. The FFPI strain gauge has a short Fabry–Pérot cavity fabricated using an excimer laser etching process, and the deformation of the [...] Read more.
This paper presents high-sensitivity, micromachined all-fiber Fabry–Pérot interferometric (FFPI) strain gauges and their integration in a force balance for hypersonic aerodynamic measurements. The FFPI strain gauge has a short Fabry–Pérot cavity fabricated using an excimer laser etching process, and the deformation of the cavity is detected by a white-light optical phase demodulator. A three-component force balance, using the proposed FFPI gauges as sensing elements, was fabricated, calibrated, and experimentally evaluated. To reduce thermal output of the balance, a simple and effective self-temperature compensation solution, without external temperature sensors, is proposed and examined through both oven heating and wind tunnel runs. As a result of this approach, researchers are able to use the balance continuously throughout a wide range of temperatures. During preliminary testing in a hypersonic wind tunnel with a free stream Mach number of 12, the measurement accuracies of the balance were clearly improved after applying the temperature self-compensation. Full article
(This article belongs to the Special Issue MEMS for Aerospace Applications)
Show Figures

Figure 1

Back to TopTop