Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = aldophosphamide-perhydrothiazines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2332 KiB  
Review
Mechanism-of-Action-Based Development of New Cyclophosphamides
by Georg Voelcker
SynBio 2023, 1(2), 158-171; https://doi.org/10.3390/synbio1020011 - 24 Aug 2023
Cited by 1 | Viewed by 2496
Abstract
Even more than 60 years after its introduction into the clinic, cyclophosphamide (CP), which belongs to the group of alkylating cytostatics, is indispensable for the treatment of cancer. This is despite the fact that its exact mechanism of action was unknown until a [...] Read more.
Even more than 60 years after its introduction into the clinic, cyclophosphamide (CP), which belongs to the group of alkylating cytostatics, is indispensable for the treatment of cancer. This is despite the fact that its exact mechanism of action was unknown until a few years ago, and therefore, all attempts to improve the effectiveness of CP failed. The reason for not knowing the mechanism of action was the uncritical transfer of the chemical processes that lead to the formation of the actual alkylating CP metabolite phosphoreamide mustard (PAM) in vitro to in vivo conditions. In vitro—e.g., in cell culture experiments—PAM is formed by β-elimination of acrolein from the pharmacologically active CP metabolite aldophosphamide (ALD). In vivo, on the other hand, it is formed by enzymatic cleavage of ALD by phosphodiesterases (PDE) with the formation of 3-hydroxypropanal (HPA). The discovery of HPA as a cyclophosphamide metabolite, together with the discovery that HPA is a proapoptotic aldehyde and the discovery that the cell death event in therapy with CP is DNA-alkylation-initiated p53-controlled apoptosis, led to the formulation of a mechanism of action of CP and other oxazaphosphorine cytostatics (OX). This mechanism of action is presented here and is confirmed by newly developed CP-like compounds with lower toxicity and an order of magnitude better effectiveness. Full article
(This article belongs to the Special Issue Feature Paper Collection in Synthetic Biology)
Show Figures

Figure 1

13 pages, 1466 KiB  
Review
The Mechanism of Action of Cyclophosphamide and Its Consequences for the Development of a New Generation of Oxazaphosphorine Cytostatics
by Georg Voelcker
Sci. Pharm. 2020, 88(4), 42; https://doi.org/10.3390/scipharm88040042 - 28 Sep 2020
Cited by 33 | Viewed by 16281
Abstract
Although cyclophosphamide (CP) has been used successfully in the clinic for over 50 years, it has so far not been possible to elucidate the mechanism of action and to use it for improvement. This was not possible because the basis of the mechanism [...] Read more.
Although cyclophosphamide (CP) has been used successfully in the clinic for over 50 years, it has so far not been possible to elucidate the mechanism of action and to use it for improvement. This was not possible because the basis of the mechanism of action of CP, which was found by lucky coincidence, is apoptosis, the discovery of which was honored with the Nobel Prize only in 2002. Another reason was that results from cell culture experiments were used to elucidate the mechanism of action, ignoring the fact that in vivo metabolism differs from in vitro conditions. In vitro, toxic acrolein is formed during the formation of the cytotoxic metabolite phosphoreamidemustard (PAM), whereas in vivo proapoptotic hydroxypropanal (HPA) is formed. The CP metabolites formed in sequence 4-hydroxycyclophosphamide (OHCP) are the main cause of toxicity, aldophosphamide (ALDO) is the pharmacologically active metabolite and HPA amplifies the cytotoxic apoptosis initiated by DNA alkylation by PAM. It is shown that toxicity is drastically reduced but anti-tumor activity strongly increased by the formation of ALDO bypassing OHCP. Furthermore, it is shown that the anti-tumor activity against advanced solid P388 tumors that grow on CD2F1 mice is increased by orders of magnitude if DNA damage caused by a modified PAM is poorly repairable. Full article
Show Figures

Figure 1

Back to TopTop