Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = agrarian infrastructure (AI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3328 KiB  
Article
AGRARIAN: A Hybrid AI-Driven Architecture for Smart Agriculture
by Michael C. Batistatos, Tomaso de Cola, Michail Alexandros Kourtis, Vassiliki Apostolopoulou, George K. Xilouris and Nikos C. Sagias
Agriculture 2025, 15(8), 904; https://doi.org/10.3390/agriculture15080904 - 21 Apr 2025
Viewed by 1462
Abstract
Modern agriculture is increasingly challenged by the need for scalable, sustainable, and connectivity-resilient digital solutions. While existing smart farming platforms offer valuable insights, they often rely heavily on centralized cloud infrastructure, which can be impractical in rural or remote settings. To address this [...] Read more.
Modern agriculture is increasingly challenged by the need for scalable, sustainable, and connectivity-resilient digital solutions. While existing smart farming platforms offer valuable insights, they often rely heavily on centralized cloud infrastructure, which can be impractical in rural or remote settings. To address this gap, this paper presents AGRARIAN, a hybrid AI-driven architecture that combines IoT sensor networks, UAV-based monitoring, satellite connectivity, and edge-cloud computing to deliver real-time, adaptive agricultural intelligence. AGRARIAN supports a modular and interoperable architecture structured across four layers—Sensor, Network, Data Processing, and Application—enabling flexible deployment in diverse use cases such as precision irrigation, livestock monitoring, and pest forecasting. A key innovation lies in its localized edge processing and federated AI models, which reduce reliance on continuous cloud access while maintaining analytical performance. Pilot scenarios demonstrate the system’s ability to provide timely, context-aware decision support, enhancing both operational efficiency and digital inclusion for farmers. AGRARIAN offers a robust and scalable pathway for advancing autonomous, sustainable, and connected farming systems. Full article
(This article belongs to the Special Issue Computational, AI and IT Solutions Helping Agriculture)
Show Figures

Figure 1

26 pages, 1589 KiB  
Article
Farmers Perceptions of Climate Change Related Events in Shendam and Riyom, Nigeria
by Simi Goyol and Chaminda Pathirage
Economies 2018, 6(4), 70; https://doi.org/10.3390/economies6040070 - 19 Dec 2018
Cited by 7 | Viewed by 9356
Abstract
Although agriculture in Nigeria is the major source of income for about 70% of the active population, the impact of agrarian infrastructure on boosting productivity and supporting livelihoods has increased. Climate change and the increasing trend of climate-related events in Nigeria challenge both [...] Read more.
Although agriculture in Nigeria is the major source of income for about 70% of the active population, the impact of agrarian infrastructure on boosting productivity and supporting livelihoods has increased. Climate change and the increasing trend of climate-related events in Nigeria challenge both the stability of agrarian infrastructure and livelihood systems. Based on case studies of two local communities in Plateau state in Nigeria, this paper utilizes a range of perceptions to examine the impacts of climate-related events on agrarian infrastructures and how agrarian livelihood systems are, in turn, affected. Data are obtained from a questionnaire survey (n = 175 farmers) and semi-structured interviews (n = 14 key informants). The study identifies local indicators of climate change, high risks climate events and the components of agrarian infrastructures that are at risk from climate events. Findings reveal that, changes in rainfall and temperature patterns increase the probability of floods and droughts. They also reveal that, although locational differences account for the high impact of floods on road transport systems and droughts on irrigation infrastructures, both have a chain of negative effects on agricultural activities, economic activities and livelihood systems. A binomial logistic regression model is used to predict the perceived impact levels of floods and droughts, while an in-depth analysis is utilized to corroborate the quantitative results. The paper further stresses the need to strengthen the institutional capacity for risk reduction through the provision of resilient infrastructures, as the poor conditions of agrarian infrastructure were identified as dominant factors on the high impact levels. Full article
(This article belongs to the Special Issue Natural Hazards and Economic Development)
Show Figures

Figure 1

Back to TopTop