Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = aerotow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 11029 KB  
Article
Adapting e-Genius for Next-Level Efficient Electric Aerotow with High-Power Propulsion and Automatic Flight Control System
by Stefan Zistler, Dalong Shi, Walter Fichter and Andreas Strohmayer
Aerospace 2025, 12(5), 409; https://doi.org/10.3390/aerospace12050409 - 6 May 2025
Viewed by 1114
Abstract
Aiming to reduce energy demand and carbon footprint, minimize noise impact, and enhance flight safety and efficiency during aerotow operations, this study integrates an electric propulsion system and an automatic flight control system (AFCS) into the electric research aircraft e-Genius. An advanced propulsion [...] Read more.
Aiming to reduce energy demand and carbon footprint, minimize noise impact, and enhance flight safety and efficiency during aerotow operations, this study integrates an electric propulsion system and an automatic flight control system (AFCS) into the electric research aircraft e-Genius. An advanced propulsion system is developed using high-performance batteries and available electric drive components, while the AFCS is designed following a systematic process of developing flight control algorithms. Flight tests are then conducted to evaluate the performance of individual components and the overall system. The test results demonstrate that the upgraded propulsion system provides sufficient power to launch sailplanes, even with the maximum takeoff mass, while significantly reducing energy demand when compared to contemporary fossil fueled towplanes. Additionally, the AFCS proves to be stable and robust, successfully following specified commanded states, executing path tracking, and performing aerotow operations. Full article
Show Figures

Figure 1

Back to TopTop