Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = adenosine deaminase acting on RNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3831 KiB  
Article
Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure
by Carolyn N. Ashley, Emmanuel Broni, Michelle Pena-Martinez, Chanyah M. Wood, Samuel K. Kwofie and Whelton A. Miller
Int. J. Mol. Sci. 2025, 26(9), 4075; https://doi.org/10.3390/ijms26094075 - 25 Apr 2025
Viewed by 845
Abstract
Mesothelioma is a rare and aggressive cancer linked to asbestos exposure and characterized by rapid metastasis and poor prognosis. Inhibition of adenosine deaminase acting on dsRNA 2 (ADAR2) RNA binding but not ADAR2 editing has shown antitumor effects in mesothelioma. Natural compounds from [...] Read more.
Mesothelioma is a rare and aggressive cancer linked to asbestos exposure and characterized by rapid metastasis and poor prognosis. Inhibition of adenosine deaminase acting on dsRNA 2 (ADAR2) RNA binding but not ADAR2 editing has shown antitumor effects in mesothelioma. Natural compounds from the Traditional Chinese Medicine (TCM) database were docked to the RNA-binding interface of ADAR2’s second dsRNA binding domain (dsRBD2), and their drug-likeness and predicted safety were assessed. Eight ligands (ZINC000085597263, ZINC000085633079, ZINC000014649947, ZINC000034512861, ZINC000070454124, ZINC000085594944, ZINC000085633008, and ZINC000095909822) showed high binding affinity to dsRBD2 from molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations. Protein–ligand interactions were analyzed to identify key residues contributing to these binding affinities. Molecular dynamics (MD) simulations of dsRBD–ligand–RNA complexes revealed that four compounds (ZINC000085597263, ZINC000085633079, ZINC000014649947, and ZINC000034512861) had negative binding affinities to dsRBD2 in the presence of the RNA substrate GluR-2. Key residues, including Val164, Met165, Lys209, and Lys212, were crucial for ligand binding, even with RNA present, suggesting these compounds could inhibit dsRBD2’s RNA-binding function. The predicted biological activities of these compounds indicate potential anticancer properties, particularly for the treatment of mesothelioma. These compounds are structurally similar to known anti-mesothelioma agents or anticancer drugs, highlighting their therapeutic potential. Current mesothelioma treatments are limited. Optimization of these compounds, alone or in combination with current therapeutics, has potential for mesothelioma treatment. Additionally, five high-quality full-length ADAR2 models were developed. These models provide insights into ADAR2 function, mutation impacts, and potential areas for protein engineering to enhance stability, RNA-binding specificity, or protein interactions, particularly concerning dimerization or complex formation with other proteins and RNAs. Full article
Show Figures

Graphical abstract

12 pages, 509 KiB  
Review
ADAR Therapeutics as a New Tool for Personalized Medicine
by Matteo Bertoli, Luca La Via and Alessandro Barbon
Genes 2025, 16(1), 77; https://doi.org/10.3390/genes16010077 - 11 Jan 2025
Viewed by 2889
Abstract
In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing [...] Read more.
In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity. Intriguingly, the novel SDRE system leverages this recoding ability of ADAR proteins to correct the pathogenic G to A nucleotide mutations through a short, engineered guide RNA (gRNA). Thus, ADAR-mediated SDRE is emerging as a powerful tool to manipulate the genetic information at the RNA level and correct disease-causing mutations without causing damage to the genome. Further it is emerging as a new instrument for personalized medicine, since treatments can be tailored to the unique genetic mutations present in an individual patient. In this short review, we aimed to described the main approached bases on ADARs activity, highlighting their advantages and disadvantages. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 4736 KiB  
Article
Overexpression of Egr1 Transcription Regulator Contributes to Schwann Cell Differentiation Defects in Neural Crest-Specific Adar1 Knockout Mice
by Lisa Zerad, Nadjet Gacem, Fanny Gayda, Lucie Day, Ketty Sinigaglia, Laurence Richard, Melanie Parisot, Nicolas Cagnard, Stephane Mathis, Christine Bole-Feysot, Mary A. O’Connell, Veronique Pingault, Emilie Dambroise, Liam P. Keegan, Jean Michel Vallat and Nadege Bondurand
Cells 2024, 13(23), 1952; https://doi.org/10.3390/cells13231952 - 23 Nov 2024
Viewed by 1625
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest [...] Read more.
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of Adar1 reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of Adar1 mutant phenotypes. By analyzing RNA-Seq data from the sciatic nerves of mouse pups after conditional neural crest deletion of Adar1 (Adar1cKO), we here identified the transcription factors deregulated in Adar1cKO mutants compared to the controls. Through Adar1;Mavs and Adar1cKO;Egr1 double-mutant mouse rescue analyses, we then highlighted that the aberrant activation of the Mavs adapter protein and overexpression of the early growth response 1 (EGR1) transcription factor contribute to the Adar1 deletion associated defects in Schwann cell development in vivo. In silico and in vitro gene regulation studies additionally suggested that EGR1 might mediate this inhibitory effect through the aberrant regulation of EGR2-regulated myelin genes. We thus demonstrate the role of the Mda5/Mavs pathway, but also that of the Schwann cell transcription factors in Adar1-associated peripheral myelination defects. Full article
Show Figures

Figure 1

15 pages, 2476 KiB  
Article
An In Vitro RNA Editing-Based Reporter Assay for Transcriptional Activity of Therapeutic Gene in Gene Therapy Products
by Lei Yu, Yong Zhou, Guangyu Wang, Jianning Fu, Zhihao Fu, Chenggang Liang and Junzhi Wang
Molecules 2024, 29(22), 5312; https://doi.org/10.3390/molecules29225312 - 11 Nov 2024
Viewed by 1565
Abstract
The expression of therapeutic genes is critical for the efficacy of gene therapy products. However, existing methods such as immunological analysis at the protein level or reverse-transcription PCR at the RNA level are unable to accurately quantify the expression activity of the target [...] Read more.
The expression of therapeutic genes is critical for the efficacy of gene therapy products. However, existing methods such as immunological analysis at the protein level or reverse-transcription PCR at the RNA level are unable to accurately quantify the expression activity of the target gene. Herein, an in vitro RNA editing-based reporter assay was developed to detect specific mRNA. The designed sensor RNA could specifically identify the target mRNA, and the reporter gene was activated in a dose-dependent manner because of RNA editing mediated by endogenous adenosine deaminases acting on RNA. Of note, all sensors that targeted different regions, including the gene of interest, tag sequence, and 3′ untranslated region, showed a dose-dependent response pattern. The sensor reporter assay, which was used for quantifying the transcriptional activity of recombinant adeno-associated virus-based gene therapy products, revealed excellent performance in terms of assay specificity, precision (inter-assay relative standard deviation < 15%), accuracy (90–115% recovery), and linearity (R2 > 0.99). The reporter assay could also be employed for other gene therapy vectors, including mRNA and recombinant lentivirus. Thus, a robust and reliable platform was developed for assessing the transcriptional activity of therapeutic genes, thereby offering a powerful tool for the quality control of gene therapy products. Full article
Show Figures

Graphical abstract

14 pages, 4098 KiB  
Article
Nucleoside Analogs in ADAR Guide Strands Enable Editing at 5′-GA Sites
by Aashrita Manjunath, Jeff Cheng, Kristen B Campbell, Casey S. Jacobsen, Herra G. Mendoza, Leila Bierbaum, Victorio Jauregui-Matos, Erin E. Doherty, Andrew J. Fisher and Peter A. Beal
Biomolecules 2024, 14(10), 1229; https://doi.org/10.3390/biom14101229 - 29 Sep 2024
Cited by 1 | Viewed by 2272
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs’ selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using [...] Read more.
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs’ selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using guiding oligonucleotides. However, this approach is limited by ADARs’ preference for specific sequence contexts to achieve efficient editing. Substrates with a guanosine adjacent to the target adenosine in the 5′ direction (5′-GA) are edited less efficiently compared to substrates with any other canonical nucleotides at this position. Previous studies showed that a G/purine mismatch at this position results in more efficient editing than a canonical G/C pair. Herein, we investigate a series of modified oligonucleotides containing purine or size-expanded nucleoside analogs on guide strands opposite the 5′-G (−1 position). The results demonstrate that modified adenosine and inosine analogs enhance editing at 5′-GA sites. Additionally, the inclusion of a size-expanded cytidine analog at this position improves editing over a control guide bearing cytidine. High-resolution crystal structures of ADAR:/RNA substrate complexes reveal the manner by which both inosine and size-expanded cytidine are capable of activating editing at 5′-GA sites. Further modification of these altered guide sequences for metabolic stability in human cells demonstrates that the incorporation of specific purine analogs at the −1 position significantly improves editing at 5′-GA sites. Full article
(This article belongs to the Special Issue RNA Therapeutics)
Show Figures

Figure 1

14 pages, 30394 KiB  
Article
ADAR1 Promotes Myogenic Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells
by Zihao Zhao, Miao Xiao, Xiaoli Xu, Meijun Song, Dinghui Dai, Siyuan Zhan, Jiaxue Cao, Jiazhong Guo, Tao Zhong, Linjie Wang, Li Li and Hongping Zhang
Cells 2024, 13(19), 1607; https://doi.org/10.3390/cells13191607 - 25 Sep 2024
Cited by 1 | Viewed by 1480
Abstract
As one of the most important economic traits for domestic animal husbandry, skeletal muscle is regulated by an intricate molecular network. Adenosine deaminase acting on RNA (ADAR1) involves various physiological processes and diseases, such as innate immunity and the development of lung adenocarcinoma, [...] Read more.
As one of the most important economic traits for domestic animal husbandry, skeletal muscle is regulated by an intricate molecular network. Adenosine deaminase acting on RNA (ADAR1) involves various physiological processes and diseases, such as innate immunity and the development of lung adenocarcinoma, breast cancer, gastric cancer, etc. However, its role in skeletal muscle growth requires further clarification. Here, we explored the functions of ADAR1 in the myogenic process of goat skeletal muscle satellite cells (MuSCs). The ADAR1 transcripts were noticeably enriched in goat visceral tissues compared to skeletal muscle. Additionally, its levels in slow oxidative muscles like the psoas major and minor muscles were higher than in the fast oxidative glycolytic and fast glycolytic muscles. Among the two common isoforms from ADAR1, p110 is more abundant than p150. Moreover, overexpressing ADAR1 enhanced the proliferation and myogenic differentiation of MuSCs. The mRNA-seq performed on MuSCs’ knockdown of ADAR1 obtained 146 differentially expressed genes (DEGs), 87 upregulated and 59 downregulated. These DEGs were concentrated in muscle development and process pathways, such as the MAPK and cAMP signaling pathways. Furthermore, many DEGs as the key nodes defined by protein–protein interaction networks (PPI), including STAT3, MYH3/8, TGFβ2, and ACTN4, were closely related to the myogenic process. Finally, RNA immunoprecipitation combined with qPCR (RIP-qPCR) showed that ADAR1 binds to PAX7 and MyoD mRNA. This study indicates that ADAR1 promotes the myogenic development of goat MuSCs, which provides a useful scientific reference for further exploring the ADAR1-related regulatory networks underlying mammal skeletal muscle growth. Full article
Show Figures

Figure 1

16 pages, 2071 KiB  
Review
Bioinformatics for Inosine: Tools and Approaches to Trace This Elusive RNA Modification
by Enrico Bortoletto and Umberto Rosani
Genes 2024, 15(8), 996; https://doi.org/10.3390/genes15080996 - 29 Jul 2024
Viewed by 2324
Abstract
Inosine is a nucleotide resulting from the deamination of adenosine in RNA. This chemical modification process, known as RNA editing, is typically mediated by a family of double-stranded RNA binding proteins named Adenosine Deaminase Acting on dsRNA (ADAR). While the presence of ADAR [...] Read more.
Inosine is a nucleotide resulting from the deamination of adenosine in RNA. This chemical modification process, known as RNA editing, is typically mediated by a family of double-stranded RNA binding proteins named Adenosine Deaminase Acting on dsRNA (ADAR). While the presence of ADAR orthologs has been traced throughout the evolution of metazoans, the existence and extension of RNA editing have been characterized in a more limited number of animals so far. Undoubtedly, ADAR-mediated RNA editing plays a vital role in physiology, organismal development and disease, making the understanding of the evolutionary conservation of this phenomenon pivotal to a deep characterization of relevant biological processes. However, the lack of direct high-throughput methods to reveal RNA modifications at single nucleotide resolution limited an extended investigation of RNA editing. Nowadays, these methods have been developed, and appropriate bioinformatic pipelines are required to fully exploit this data, which can complement existing approaches to detect ADAR editing. Here, we review the current literature on the “bioinformatics for inosine” subject and we discuss future research avenues in the field. Full article
(This article belongs to the Special Issue Bioinformatics of RNA Modifications and Epitranscriptome)
Show Figures

Figure 1

15 pages, 16991 KiB  
Article
ADAR1 Is Essential for Smooth Muscle Homeostasis and Vascular Integrity
by Dunpeng Cai and Shi-You Chen
Cells 2024, 13(15), 1257; https://doi.org/10.3390/cells13151257 - 26 Jul 2024
Cited by 2 | Viewed by 1791
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 [...] Read more.
Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Graphical abstract

18 pages, 2782 KiB  
Article
Revealing Differential RNA Editing Specificity of Human ADAR1 and ADAR2 in Schizosaccharomyces pombe
by Niubing Zhang, Ping Chen, Zilin Cui, Xiaojuan Zhou, Chenhui Hao, Bingran Xie, Pei Hao, Bang-Ce Ye, Xuan Li and Xinyun Jing
Genes 2024, 15(7), 898; https://doi.org/10.3390/genes15070898 - 9 Jul 2024
Viewed by 2399
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification mediated by the adenosine deaminases acting on RNA (ADAR) family of enzymes, expanding the transcriptome by altering selected nucleotides A to I in RNA molecules. Recently, A-to-I editing has been explored for correcting disease-causing [...] Read more.
Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification mediated by the adenosine deaminases acting on RNA (ADAR) family of enzymes, expanding the transcriptome by altering selected nucleotides A to I in RNA molecules. Recently, A-to-I editing has been explored for correcting disease-causing mutations in RNA using therapeutic guide oligonucleotides to direct ADAR editing at specific sites. Humans have two active ADARs whose preferences and specificities are not well understood. To investigate their substrate specificity, we introduced hADAR1 and hADAR2, respectively, into Schizosaccharomyces pombe (S. pombe), which lacks endogenous ADARs, and evaluated their editing activities in vivo. Using transcriptome sequencing of S. pombe cultured at optimal growth temperature (30 °C), we identified 483 A-to-I high-confident editing sites for hADAR1 and 404 for hADAR2, compared with the non-editing wild-type control strain. However, these sites were mostly divergent between hADAR1 and hADAR2-expressing strains, sharing 33 common sites that are less than 9% for each strain. Their differential specificity for substrates was attributed to their differential preference for neighboring sequences of editing sites. We found that at the -3-position relative to the editing site, hADAR1 exhibits a tendency toward T, whereas hADAR2 leans toward A. Additionally, when varying the growth temperature for hADAR1- and hADAR2-expressing strains, we observed increased editing sites for them at both 20 and 35 °C, compared with them growing at 30 °C. However, we did not observe a significant shift in hADAR1 and hADAR2’s preference for neighboring sequences across three temperatures. The vast changes in RNA editing sites at lower and higher temperatures were also observed for hADAR2 previously in budding yeast, which was likely due to the influence of RNA folding at these different temperatures, among many other factors. We noticed examples of longer lengths of dsRNA around the editing sites that induced editing at 20 or 35 °C but were absent at the other two temperature conditions. We found genes’ functions can be greatly affected by editing of their transcripts, for which over 50% of RNA editing sites for both hADAR1 and hADAR2 in S. pombe were in coding sequences (CDS), with more than 60% of them resulting in amino acid changes in protein products. This study revealed the extensive differences in substrate selectivity between the two active human ADARS, i.e., ADAR1 and ADAR2, and provided novel insight when utilizing the two different enzymes for in vivo treatment of human genetic diseases using the RNA editing approach. Full article
(This article belongs to the Special Issue RNAs in Biology)
Show Figures

Figure 1

15 pages, 9853 KiB  
Article
Adar Regulates Drosophila melanogaster Spermatogenesis via Modulation of BMP Signaling
by Qian Zhang, Xinxin Fan, Fang Fu, Yuedan Zhu, Guanzheng Luo and Haiyang Chen
Int. J. Mol. Sci. 2024, 25(11), 5643; https://doi.org/10.3390/ijms25115643 - 22 May 2024
Viewed by 1863
Abstract
The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet [...] Read more.
The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 1119 KiB  
Review
Epigenetic Restriction Factors (eRFs) in Virus Infection
by Arunava Roy and Anandita Ghosh
Viruses 2024, 16(2), 183; https://doi.org/10.3390/v16020183 - 25 Jan 2024
Cited by 3 | Viewed by 3170
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research [...] Read more.
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases—adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA—the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area. Full article
(This article belongs to the Special Issue Epigenetic Modifications in Viral Infections)
Show Figures

Figure 1

27 pages, 2878 KiB  
Review
Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications
by Shenghui Weng, Xinyi Yang, Nannan Yu, Peng-Cheng Wang, Sidong Xiong and Hang Ruan
Int. J. Mol. Sci. 2024, 25(1), 351; https://doi.org/10.3390/ijms25010351 - 26 Dec 2023
Cited by 1 | Viewed by 3988
Abstract
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation [...] Read more.
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human cancer. We comprehensively review ADARs’ function as pattern recognizers and their capability to contribute to mediating immune-related pathways. We also highlight the potential role of site-specific RNA editing in maintaining homeostasis and its relationship to various diseases, such as human cancers. More importantly, we summarize the latest cutting-edge computational approaches and data resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement in site-directed ADAR editing tool development. This review presents an up-to-date overview of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease pathology, and how they could be harnessed for therapeutic applications. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancers: Advances and Challenges)
Show Figures

Figure 1

25 pages, 8398 KiB  
Article
Anti-Inflammatory Properties of Eugenol in Lipopolysaccharide-Induced Macrophages and Its Role in Preventing β-Cell Dedifferentiation and Loss Induced by High Glucose-High Lipid Conditions
by Esmaeel Ghasemi Gojani, Bo Wang, Dong-Ping Li, Olga Kovalchuk and Igor Kovalchuk
Molecules 2023, 28(22), 7619; https://doi.org/10.3390/molecules28227619 - 16 Nov 2023
Cited by 8 | Viewed by 3000
Abstract
Inflammation is a natural immune response to injury, infection, or tissue damage. It plays a crucial role in maintaining overall health and promoting healing. However, when inflammation becomes chronic and uncontrolled, it can contribute to the development of various inflammatory conditions, including type [...] Read more.
Inflammation is a natural immune response to injury, infection, or tissue damage. It plays a crucial role in maintaining overall health and promoting healing. However, when inflammation becomes chronic and uncontrolled, it can contribute to the development of various inflammatory conditions, including type 2 diabetes. In type 2 diabetes, pancreatic β-cells have to overwork and the continuous impact of a high glucose, high lipid (HG-HL) diet contributes to their loss and dedifferentiation. This study aimed to investigate the anti-inflammatory effects of eugenol and its impact on the loss and dedifferentiation of β-cells. THP-1 macrophages were pretreated with eugenol for one hour and then exposed to lipopolysaccharide (LPS) for three hours to induce inflammation. Additionally, the second phase of NLRP3 inflammasome activation was induced by incubating the LPS-stimulated cells with adenosine triphosphate (ATP) for 30 min. The results showed that eugenol reduced the expression of proinflammatory genes, such as IL-1β, IL-6 and cyclooxygenase-2 (COX-2), potentially by inhibiting the activation of transcription factors NF-κB and TYK2. Eugenol also demonstrated inhibitory effects on the levels of NLRP3 mRNA and protein and Pannexin-1 (PANX-1) activation, eventually impacting the assembly of the NLRP3 inflammasome and the production of mature IL-1β. Additionally, eugenol reduced the elevated levels of adenosine deaminase acting on RNA 1 (ADAR1) transcript, suggesting its role in post-transcriptional mechanisms that regulate inflammatory responses. Furthermore, eugenol effectively decreased the loss of β-cells in response to HG-HL, likely by mitigating apoptosis. It also showed promise in suppressing HG-HL-induced β-cell dedifferentiation by restoring β-cell-specific biomarkers. Further research on eugenol and its mechanisms of action could lead to the development of therapeutic interventions for inflammatory disorders and the preservation of β-cell function in the context of type 2 diabetes. Full article
(This article belongs to the Special Issue Natural Products and Analogues with Promising Biological Profiles)
Show Figures

Figure 1

15 pages, 566 KiB  
Review
RNA Editing-Dependent and -Independent Roles of Adenosine Deaminases Acting on RNA Proteins in Herpesvirus Infection—Hints on Another Layer of Complexity
by Vlatka Ivanišević, Lidia Žilić, Marina Čunko, Hana Fadiga, Ivana Munitić and Igor Jurak
Viruses 2023, 15(10), 2007; https://doi.org/10.3390/v15102007 - 27 Sep 2023
Cited by 3 | Viewed by 2310
Abstract
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self [...] Read more.
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self and non-self (virus), and it is essential for normal regulation of cellular homeostasis. Although much is already known about the role of ADAR proteins in RNA virus infection, the role of ADAR proteins in herpesvirus infection remains largely unexplored. In this review, we provide several lines of evidence from studies of different herpesviruses for another level of complexity in regulating the already intricate biphasic life cycle of herpesviruses. Full article
(This article belongs to the Special Issue Herpesvirus Manipulation of Cellular Processes 2.0)
Show Figures

Figure 1

31 pages, 3355 KiB  
Article
In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds
by Emmanuel Broni, Carolyn Ashley, Miriam Velazquez, Sufia Khan, Andrew Striegel, Patrick O. Sakyi, Saqib Peracha, Kristeen Bebla, Monsheel Sodhi, Samuel K. Kwofie, Adesanya Ademokunwa and Whelton A. Miller
Int. J. Mol. Sci. 2023, 24(16), 12612; https://doi.org/10.3390/ijms241612612 - 9 Aug 2023
Cited by 5 | Viewed by 3204
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory [...] Read more.
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<−9.5 kcal/mol) than the known inhibitor, 8-azanebularine (−6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from −7.8 to −12.9 kcal/mol. Further subjecting the top ADAR2–ligand complexes to molecular dynamics simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of −174.911, −137.369, −117.236, −67.023, and −64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation. Full article
Show Figures

Figure 1

Back to TopTop