Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = adaptive DSP radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7029 KiB  
Article
Tracking of Low Radar Cross-Section Super-Sonic Objects Using Millimeter Wavelength Doppler Radar and Adaptive Digital Signal Processing
by Yair Richter, Shlomo Zach, Maxi Y. Blum, Gad A. Pinhasi and Yosef Pinhasi
Remote Sens. 2025, 17(4), 650; https://doi.org/10.3390/rs17040650 - 14 Feb 2025
Cited by 1 | Viewed by 944
Abstract
Small targets with low radar cross-section (RCS) and high velocities are very hard to track by radar as long as the frequent variations in speed and location demand shorten the integration temporal window. In this paper, we propose a technique for tracking evasive [...] Read more.
Small targets with low radar cross-section (RCS) and high velocities are very hard to track by radar as long as the frequent variations in speed and location demand shorten the integration temporal window. In this paper, we propose a technique for tracking evasive targets using a continuous wave (CW) radar array of multiple transmitters operating in the millimeter wavelength (MMW). The scheme is demonstrated to detect supersonic moving objects, such as rifle projectiles, with extremely short integration times while utilizing an adaptive processing algorithm of the received signal. Operation at extremely high frequencies qualifies spatial discrimination, leading to resolution improvement over radars operating in commonly used lower frequencies. CW transmissions result in efficient average power utilization and consumption of narrow bandwidths. It is shown that although CW radars are not naturally designed to estimate distances, the array arrangement can track the instantaneous location and velocity of even supersonic targets. Since a CW radar measures the target velocity via the Doppler frequency shift, it is resistant to the detection of undesired immovable objects in multi-scattering scenarios; thus, the tracking ability is not impaired in a stationary, cluttered environment. Using the presented radar scheme is shown to enable the processing of extremely weak signals that are reflected from objects with a low RCS. In the presented approach, the significant improvement in resolution is beneficial for the reduction in the required detection time. In addition, in relation to reducing the target recording time for processing, the presented scheme stimulates the detection and tracking of objects that make frequent changes in their velocity and position. Full article
Show Figures

Figure 1

19 pages, 114272 KiB  
Article
Improving CPT-InSAR Algorithm with Adaptive Coherent Distributed Pixels Selection
by Longkai Dong, Chao Wang, Yixian Tang, Hong Zhang and Lu Xu
Remote Sens. 2021, 13(23), 4784; https://doi.org/10.3390/rs13234784 - 25 Nov 2021
Cited by 4 | Viewed by 2959
Abstract
The Coherent Pixels Technique Interferometry Synthetic Aperture Radar (CPT-InSAR) method of inverting surface deformation parameters by using high-quality measuring points possesses the flaw inducing sparse measuring points in non-urban areas. In this paper, we propose the Adaptive Coherent Distributed Pixel InSAR (ACDP-InSAR) method, [...] Read more.
The Coherent Pixels Technique Interferometry Synthetic Aperture Radar (CPT-InSAR) method of inverting surface deformation parameters by using high-quality measuring points possesses the flaw inducing sparse measuring points in non-urban areas. In this paper, we propose the Adaptive Coherent Distributed Pixel InSAR (ACDP-InSAR) method, which is an adaptive method used to extract Distributed Scattering Pixel (DSP) based on statistically homogeneous pixel (SHP) cluster tests and improves the phase quality of DSP through phase optimization, which cooperates with Coherent Pixel (CP) for the retrieval of ground surface deformation parameters. For a region with sparse CPs, DSPs and its SHPs are detected by double-layer windows in two steps, i.e., multilook windows and spatial filtering windows, respectively. After counting the pixel number of maximum SHP cluster (MSHPC) in the multilook window based on the Anderson–Darling (AD) test and filtering out unsuitable pixels, the candidate DSPs are selected. For the filtering window, the SHPs of MSHPC’ pixels within the new window, which is different compared with multilook windows, were detected, and the SHPs of DSPs were obtained, which were used for coherent estimation. In phase-linking, the results of Eigen decomposition-based Maximum likelihood estimator of Interferometric phase (EMI) results are used as the initial values of the phase triangle algorithm (PTA) for the purpose of phase estimation (hereafter called as PTA-EMI). The DSPs and estimated phase are then combined with CPs in order to retrievesurface deformation parameters. The method was validated by two cases. The results show that the density of measuring points increased approximately 6–10 times compared with CPT-InSAR, and the quality of the interferometric phase significantly improved after phase optimization. It was demonstrated that the method is effective in increasing measuring point density and improving phase quality, which increases significantly the detectability of the low coherence region. Compared with the Distributed Scatterer InSAR (DS-InSAR) technique, ACDP-InSAR possesses faster processing speed at the cost of resolution loss, which is crucial for Earth surface movement monitoring at large spatial scales. Full article
(This article belongs to the Special Issue Advances in InSAR Imaging and Data Processing)
Show Figures

Graphical abstract

15 pages, 1233 KiB  
Article
Design and Application Space Exploration of a Domain-Specific Accelerator System
by Fan Feng, Li Li, Kun Wang, Yuxiang Fu, Guoqiang He and Hongbing Pan
Electronics 2018, 7(4), 45; https://doi.org/10.3390/electronics7040045 - 29 Mar 2018
Cited by 4 | Viewed by 5535
Abstract
Domain-specific accelerators are a reaction adapting to device scaling and the dark silicon era. This paper describes a radar signal processing oriented configurable accelerator and the application space exploration of the system. The system is built around accelerator engines and general-purpose processors (GPPs) [...] Read more.
Domain-specific accelerators are a reaction adapting to device scaling and the dark silicon era. This paper describes a radar signal processing oriented configurable accelerator and the application space exploration of the system. The system is built around accelerator engines and general-purpose processors (GPPs) that make it suitable for intensive computing kernel acceleration and complex control tasks. It is geared toward high-performance radar digital signal processing; we characterize the applications and find that each of them contains a series of serializable kernels. Taking advantage of this discovery, we design an algorithm pool that shares the same computation resource and memory resource, and each algorithm is size reconfigurable. On the other hand, shared on-chip addressable scratchpad memory eliminates unnecessary explicit data copy between accelerators. Performance of the system is evaluated from measurements performed both on an FPGA SoC test chip and on a prototype chip fabricated by CMOS 40 nm technology. The experimental results show that for different algorithms, the proposed system achieves 1.9× to 10.1× performance gain compared with a state-of-the-art TI DSP chip. In order to characterize the application of the system, a complex real-life task is adopted, and the results show that it can obtain high throughput and desirable precision. Full article
Show Figures

Figure 1

Back to TopTop