Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = acylalanine fungicides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1589 KiB  
Article
Study on the Design, Synthesis, Bioactivity and Translocation of the Conjugates of Phenazine-1-carboxylic Acid and N-Phenyl Alanine Ester
by Yiran Wu, Guoqing Mao, Gaoshan Xing, Yao Tian, Yong Hu, Changzhou Liao, Li Li, Xiang Zhu and Junkai Li
Molecules 2024, 29(8), 1780; https://doi.org/10.3390/molecules29081780 - 14 Apr 2024
Cited by 3 | Viewed by 1492
Abstract
The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed [...] Read more.
The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 μmol/L, which was six times higher than Metalaxyl (3.56 μmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the “ion trap” effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 3145 KiB  
Article
Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl-N-arylalaninates
by Tatiana A. Kalinina, Valeriya I. Balandina, Konstantin L. Obydennov, Pavel A. Slepukhin, Zhijin Fan, Vasiliy A. Bakulev and Tatiana V. Glukhareva
Molecules 2023, 28(1), 419; https://doi.org/10.3390/molecules28010419 - 3 Jan 2023
Cited by 5 | Viewed by 2714
Abstract
The addition of active groups of known fungicides, or systemic acquired resistance inducers, into novel compound molecules to search for potential antifungal compounds is a popular and effective strategy. In this work, a new series of N-acyl-N-arylalanines was developed and [...] Read more.
The addition of active groups of known fungicides, or systemic acquired resistance inducers, into novel compound molecules to search for potential antifungal compounds is a popular and effective strategy. In this work, a new series of N-acyl-N-arylalanines was developed and synthesized, in which 1,2,3-thiadiazol-5-ylcarbonyl or 3,4-dichloroisothiazol-5-ylcarbonyl (fragments from synthetic plant resistance activators tiadinil and isotianil, respectively) and a fragment of N-arylalanine, the toxophoric group of acylalanine fungicides. Several new synthesized compounds have shown moderate antifungal activity against fungi in vitro, such as B. cinerea, R. solani and S. sclerotiorum. In vivo tests against A. brassicicola showed that compound 1d was 92% effective at a concentration of 200 µg/mL, similar to level of tiadinil, a known inducer of systemic resistance. Thus, 1d could be considered a new candidate fungicide for further detailed study. The present results will advance research and influence the search for more promising fungicides for disease control in agriculture. Full article
(This article belongs to the Special Issue Recent Advances in the Use of Azoles in Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop