Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = acute time-limited stressors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6839 KiB  
Article
Physiological Responses of Laying Hens to Chronic Cold Stress and Ammonia Exposure: Implications for Environmental Management and Poultry Welfare
by Dapeng Li, Fuwei Li, Wei Liu, Haixia Han, Jie Wang, Dan Hao and Yan Sun
Animals 2025, 15(12), 1769; https://doi.org/10.3390/ani15121769 - 16 Jun 2025
Viewed by 634
Abstract
Controlling low ambient temperatures and ammonia levels is critical for effective environmental management in poultry houses during winter, as both represent persistent stressors affecting bird health and productivity. However, evidence regarding their combined long-term effects on the physiological responses of laying hens remains [...] Read more.
Controlling low ambient temperatures and ammonia levels is critical for effective environmental management in poultry houses during winter, as both represent persistent stressors affecting bird health and productivity. However, evidence regarding their combined long-term effects on the physiological responses of laying hens remains limited. In this study, 576 eighteen-week-old Hy-Line Brown hens were randomly assigned to six treatments (8 replicates with 12 birds per replicate each treatment) and housed in environmentally controlled chambers for 20 weeks: T1 (8 °C, ≤5 ppm ammonia), T2 (8 °C, 20 ppm ammonia), T3 (8 °C, 45 ppm ammonia), T4 (20 °C, ≤5 ppm ammonia; control), T5 (20 °C, 20 ppm ammonia), and T6 (20 °C, 45 ppm ammonia). Plasma samples were collected at 22, 26, 30, 34, and 38 weeks to evaluate physiological stress biomarkers (corticosterone, CORT; total antioxidant capacity, T-AOC), immunoglobulins (IgG, IgM, and IgA), and reproductive hormones (luteinizing hormone, LH; follicle-stimulating hormone, FSH; estradiol, E2). At 38 weeks, hypothalamus, pituitary, and spleen tissues were collected to assess the relative mRNA expression of gonadotropin-releasing hormone (GnRH), FSH, tumor necrosis factor-α (TNF-α), and interleukins (IL-1β, IL-6, and IL-10). Results showed that both cold and ammonia stress reduced antioxidant capacity, disrupted immune homeostasis, and altered reproductive hormone profiles. Cold exposure induced acute immunoendocrine alterations with partial physiological adaptation over time, whereas ammonia exerted progressive and cumulative damage, including elevated immunoglobulins (IgG and IgM) and downregulation of GnRH and FSH expression. Combined exposure significantly upregulated TNF-α and IL-1β expression, suggesting a synergistic inflammatory response. These results highlight complex, parameter-specific interactions between cold and ammonia stressors, emphasizing the need for targeted environmental strategies. Stage-specific interventions—thermal regulation in early laying and ammonia control in later phases—are recommended to safeguard hen health and optimize productivity under winter conditions. Full article
(This article belongs to the Special Issue Sustainable Strategies for Intensive Livestock Production Systems)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Validation of a New Stress Induction Protocol Using Speech Improvisation (IMPRO)
by Marina Saskovets, Mykhailo Lohachov and Zilu Liang
Brain Sci. 2025, 15(5), 522; https://doi.org/10.3390/brainsci15050522 - 19 May 2025
Cited by 1 | Viewed by 658
Abstract
Background: Acute stress induction is essential in psychology research for understanding physiological and psychological responses. In this study, ‘acute stress’ refers to a short-term, immediate stress response—distinct from chronic, long-term stress exposure. Traditional methods, such as the Trier Social Stress Test (TSST), have [...] Read more.
Background: Acute stress induction is essential in psychology research for understanding physiological and psychological responses. In this study, ‘acute stress’ refers to a short-term, immediate stress response—distinct from chronic, long-term stress exposure. Traditional methods, such as the Trier Social Stress Test (TSST), have ecological validity and resource-efficiency limitations. This study introduces the Interactive Multitask Performance Response Observation (IMPRO) protocol, a novel stress-induction method utilizing speech improvisation in a dynamic and unpredictable social setting. Methods: Thirty-five healthy adults (aged 18–38 years; 19 males, 16 females) participated in the study. The IMPRO protocol consisted of three speech improvisation tasks with increasing cognitive and social stressors. Salivary cortisol was used as a biochemical marker of acute stress, while electrodermal activity (EDA) provided real-time autonomic arousal measurements. Stress responses were assessed using paired t-tests for cortisol levels and repeated-measures ANOVA for EDA variations across experimental stages. Results: Salivary cortisol levels significantly increased from baseline (M = 2.68 nM, SD = 0.99) to post-task (M = 3.54 nM, SD = 1.25, p = 0.001, Cohen’s d = 0.59), confirming hypothalamic–pituitary–adrenal (HPA) axis activation. EDA showed a significant rise during the anticipation phase (p < 0.001), peaking at the final task and decreasing during recovery (η2 = 0.643). Conclusions: The IMPRO protocol effectively induces acute stress responses, providing a scalable, ecologically valid alternative to traditional stress paradigms. Its low-cost, adaptable design makes it ideal for research in psychology, neuroscience, and behavioral sciences. Future studies should explore its application in clinical populations and group settings. Full article
Show Figures

Figure 1

18 pages, 3118 KiB  
Article
Temporal Dynamics of Plasma Catecholamines, Metabolic and Immune Markers, and the Corticosterone:DHEA Ratio in Farmed Crocodiles before and after an Acute Stressor
by Andre A. Swanepoel, Christoff Truter, Francois P. Viljoen, Jan G. Myburgh and Brian H. Harvey
Animals 2024, 14(15), 2236; https://doi.org/10.3390/ani14152236 - 31 Jul 2024
Cited by 1 | Viewed by 1699
Abstract
Commercial crocodilian farms face significant economic and livestock losses attributed to stress, which may be linked to their adopted husbandry practices. The development of appropriate and modernized husbandry guidelines, particularly those focused on stress mitigation, is impeded by the limited understanding of the [...] Read more.
Commercial crocodilian farms face significant economic and livestock losses attributed to stress, which may be linked to their adopted husbandry practices. The development of appropriate and modernized husbandry guidelines, particularly those focused on stress mitigation, is impeded by the limited understanding of the crocodilian stress response. Fifteen grower Nile crocodiles were subjected to simulated acute transport stress, with blood samples collected at various intervals post-stress. Plasma levels of corticosterone (CORT), dehydroepiandrosterone (DHEA), adrenaline, and noradrenaline were determined using high-performance liquid chromatography. Glucose and lactate were measured using portable meters and the heterophil-to-lymphocyte ratio (HLR) was determined via differential leucocyte counts. Significant differences were elicited after the stressor, with acute fluctuations observed in the fast-acting catecholamines (adrenaline and noradrenaline) when compared to the baseline. Downstream effects of these catecholamines and CORT appear to be associated with a persistent increase in plasma glucose and HLR. Lactate also showed acute fluctuations over time but returned to the baseline by the final measurement. DHEA, which is used in a ratio with CORT, showed fluctuations over time with an inverted release pattern to the catecholamines. The study highlights the temporal dynamics of physiological markers under acute stress, contributing to our understanding of crocodilian stress and potentially informing improved farming practices for conservation and sustainable management. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

12 pages, 1984 KiB  
Article
Ciliated Epibionts Modify the Cardiac Stress Reaction to Perceived Predation in Daphnia
by Andrew K. Davis and Helen Gloege
Microorganisms 2024, 12(6), 1219; https://doi.org/10.3390/microorganisms12061219 - 18 Jun 2024
Cited by 1 | Viewed by 1626
Abstract
When animals perceive an acute stressor like a predator, they typically undergo a suite of physiological changes that function to improve survival during the encounter, such as elevation in cardiac output, to supply more energy to muscles. If bodily energy is limited, such [...] Read more.
When animals perceive an acute stressor like a predator, they typically undergo a suite of physiological changes that function to improve survival during the encounter, such as elevation in cardiac output, to supply more energy to muscles. If bodily energy is limited, such as by parasites or infections, these functions could become less efficient and lessen host survival. In the aquatic world of microorganisms, individuals can become colonized by other organisms on their surface (epibionts), which could sap energy from their host from their weight, or even compete with the host for food. Here, we tested if one epibiont (a ciliated protozoan, Vorticella spp.) affects its hosts’ ability to mount a physiological stress reaction. We collected wild daphnia (Daphnia ambigua) that had varying burdens of these on their bodies and exposed them to a simulated stressor (crushed daphnia, to simulate nearby predation) under a microscope while monitoring for changes in their heart rates in real time. Out of 121 daphnia, those with no Vorticella epibionts showed no meaningful changes in their heart rate after exposure, but those with light or heavy burdens showed immediate elevations (within 5 min). Moreover, the heart rates of heavily burdened daphnia continued to rise for 1.5 h thereafter, to as much as 17% higher than at baseline. These patterns were unexpected, as they suggest that the ciliated epibionts act to elevate their hosts’ physiological reaction, rather than dampen it, perhaps by churning the water column around the host, thereby enhancing the chemical alarm cue. The procedures used in this study may be useful for future investigations into the acute stress reactions of daphnia or other microorganisms. Full article
Show Figures

Figure 1

23 pages, 1674 KiB  
Article
EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features
by Ala Hag, Dini Handayani, Thulasyammal Pillai, Teddy Mantoro, Mun Hou Kit and Fares Al-Shargie
Sensors 2021, 21(18), 6300; https://doi.org/10.3390/s21186300 - 20 Sep 2021
Cited by 30 | Viewed by 7296
Abstract
Exposure to mental stress for long period leads to serious accidents and health problems. To avoid negative consequences on health and safety, it is very important to detect mental stress at its early stages, i.e., when it is still limited to acute or [...] Read more.
Exposure to mental stress for long period leads to serious accidents and health problems. To avoid negative consequences on health and safety, it is very important to detect mental stress at its early stages, i.e., when it is still limited to acute or episodic stress. In this study, we developed an experimental protocol to induce two different levels of stress by utilizing a mental arithmetic task with time pressure and negative feedback as the stressors. We assessed the levels of stress on 22 healthy subjects using frontal electroencephalogram (EEG) signals, salivary alpha-amylase level (AAL), and multiple machine learning (ML) classifiers. The EEG signals were analyzed using a fusion of functional connectivity networks estimated by the Phase Locking Value (PLV) and temporal and spectral domain features. A total of 210 different features were extracted from all domains. Only the optimum multi-domain features were used for classification. We then quantified stress levels using statistical analysis and seven ML classifiers. Our result showed that the AAL level was significantly increased (p < 0.01) under stress condition in all subjects. Likewise, the functional connectivity network demonstrated a significant decrease under stress, p < 0.05. Moreover, we achieved the highest stress classification accuracy of 93.2% using the Support Vector Machine (SVM) classifier. Other classifiers produced relatively similar results. Full article
(This article belongs to the Special Issue EEG Signal Processing for Biomedical Applications)
Show Figures

Figure 1

18 pages, 2671 KiB  
Article
Computational Psychometrics Using Psychophysiological Measures for the Assessment of Acute Mental Stress
by Pietro Cipresso, Desirée Colombo and Giuseppe Riva
Sensors 2019, 19(4), 781; https://doi.org/10.3390/s19040781 - 14 Feb 2019
Cited by 18 | Viewed by 5887
Abstract
The goal of this study was to provide reliable quantitative analyses of psycho-physiological measures during acute mental stress. Acute, time-limited stressors are used extensively as experimental stimuli in psychophysiological research. In particular, the Stroop Color Word Task and the Arithmetical Task have been [...] Read more.
The goal of this study was to provide reliable quantitative analyses of psycho-physiological measures during acute mental stress. Acute, time-limited stressors are used extensively as experimental stimuli in psychophysiological research. In particular, the Stroop Color Word Task and the Arithmetical Task have been widely used in several settings as effective mental stressors. We collected psychophysiological data on blood volume pulse, thoracic respiration, and skin conductance from 60 participants at rest and during stressful situations. Subsequently, we used statistical univariate tests and multivariate computational approaches to conduct comprehensive studies on the discriminative properties of each condition in relation to psychophysiological correlates. The results showed evidence of a greater discrimination capability of the Arithmetical Task compared to the Stroop test. The best predictors were the short time Heart Rate Variability (HRV) indices, in particular, the Respiratory Sinus Arrhythmia index, which in turn could be predicted by other HRV and respiratory indices in a hierarchical, multi-level regression analysis. Thus, computational psychometrics analyses proved to be an effective tool for studying such complex variables. They could represent the first step in developing complex platforms for the automatic detection of mental stress, which could improve the treatment. Full article
(This article belongs to the Special Issue New Trends in Psychophysiology and Mental Health)
Show Figures

Figure 1

19 pages, 693 KiB  
Article
Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects
by Rima A. Alomari, Mercedes Fernandez, Jonathan B. Banks, Juliana Acosta and Jaime L. Tartar
Brain Sci. 2015, 5(2), 201-219; https://doi.org/10.3390/brainsci5020201 - 20 May 2015
Cited by 31 | Viewed by 9524
Abstract
Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min [...] Read more.
Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30–40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention. Full article
(This article belongs to the Special Issue Emotion, Cognition and Behavior)
Show Figures

Figure 1

Back to TopTop