Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ZmEXPA6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 26167 KB  
Article
A Novel Breeding Target for Salt-Tolerant Maize: ZmEXPA3 Overexpression Enhances Growth of Maize Under Both Non-Stressed and Salt Stress Conditions Through Cell-Wall Architecture Alteration
by Bingying Leng, Xia Liu, Yue Sun, Huiru Yin, Chunhua Mu, Shijun Ma, Qiantong Liu, Jing Hou, Zhenwei Yan and Guoqi Yao
Plants 2025, 14(23), 3697; https://doi.org/10.3390/plants14233697 - 4 Dec 2025
Viewed by 450
Abstract
Expansins contribute to maize tolerance to salt stress, but the molecular mechanisms by which they function under high-salinity conditions remain poorly understood. In this research, the α-expansin gene ZmEXPA3 was characterized. We obtained overexpression transgenic lines in maize and determined physiological and biochemical [...] Read more.
Expansins contribute to maize tolerance to salt stress, but the molecular mechanisms by which they function under high-salinity conditions remain poorly understood. In this research, the α-expansin gene ZmEXPA3 was characterized. We obtained overexpression transgenic lines in maize and determined physiological and biochemical indices to elucidate its molecular role in salt stress. Our results confirmed that ZmEXPA3 functioned as a positive salt tolerance regulator and was potentially regulated by abscisic acid (ABA) and methyl jasmonate (MeJA). ZmEXPA3 located to the cytoplasm and cell wall. Overexpression of ZmEXPA3 achieved thicker cell wall and bigger cell size and thereby promoted biomass accumulation. The ZmEXPA3-OE lines showed a marked reduction in malondialdehyde (MDA) and H2O2 accumulation compared to the WT under salt stress. Overexpression of ZmEXPA3 elevated the enzyme activity of peroxidase (POD) and superoxide dismutase (SOD) and proline accumulation and decreased the Na+/K+ ratio in roots. Transcriptome and Gene Ontology (GO) enrichment analysis of ZmEXPA3-OE lines and WT showed that many differentially expressed genes (DEGs) were enriched in cell-wall-related terms, plant hormone response, osmotic stress response, salt stress response, oxidoreductase activity, etc. Changes in these processes may be the primary reasons why ZmEXPA3 overexpression promotes growth and salt tolerance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 7832 KB  
Article
Overexpression of Maize Expansin Gene ZmEXPA6 Improves Salt Tolerance of Arabidopsis thaliana
by Yue Sun, Qiantong Liu, Zhenwei Yan, Shijun Ma, Xia Liu, Chunhua Mu, Guoqi Yao and Bingying Leng
Agronomy 2025, 15(9), 2240; https://doi.org/10.3390/agronomy15092240 - 22 Sep 2025
Cited by 3 | Viewed by 686
Abstract
Maize is a globally vital crop for both grain and forage production. Its cultivation and growth are significantly restricted by salt stress. Expansins are non-enzymatic plant cell wall proteins that play pivotal roles in growth, development, and stress responses by mediating cell wall [...] Read more.
Maize is a globally vital crop for both grain and forage production. Its cultivation and growth are significantly restricted by salt stress. Expansins are non-enzymatic plant cell wall proteins that play pivotal roles in growth, development, and stress responses by mediating cell wall loosening. We identified ZmEXPA6, an α-expansin gene, as exhibiting high expression levels in maize roots under salt stress. In this study, the ZmEXPA6 gene was cloned and functionally characterized. Heterologous overexpression of ZmEXPA6 promoted root elongation and enhanced salt tolerance of Arabidopsis thaliana. Under salt stress, the ZmEXPA6 overexpression lines exhibited elevated levels of anthocyanin (61.70%, 59.70%), proline (16.39%, 15.11%), soluble sugars (11.97%, 8.68%), and soluble proteins (14.83%, 13.74%) compared to the WT. Concurrently, the expression of genes associated with anthocyanin and proline biosynthesis was markedly up-regulated in these overexpression lines. The ZmEXPA6 overexpression lines exhibited elevated activities of SOD (23.81%, 23.51%), CAT (13.86%, 10.93%), and POD (4.27%, 1.39%) compared to the WT, along with significantly reduced accumulation of MDA (23.47%, 24.48%), O2 (21.9%, 19.8%), and H2O2 (27.61%, 18.07%). These results indicate that ZmEXPA6 is involved in the growth and development of Arabidopsis thaliana and improves its salt tolerance through enhanced osmotic adjustment and elevated antioxidant capacity. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop