Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ZPD validation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13892 KB  
Article
ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea
by Andrea Antonini, Luca Fibbi, Massimo Viti, Aldo Sonnini, Simone Montagnani and Alberto Ortolani
Sensors 2024, 24(10), 3177; https://doi.org/10.3390/s24103177 - 16 May 2024
Viewed by 1680
Abstract
This work presents the design and implementation of an operational infrastructure for the monitoring of atmospheric parameters at sea through GNSS meteorology sensors installed on liners operating in the north-west Mediterranean Sea. A measurement system, capable of operationally and continuously providing the values [...] Read more.
This work presents the design and implementation of an operational infrastructure for the monitoring of atmospheric parameters at sea through GNSS meteorology sensors installed on liners operating in the north-west Mediterranean Sea. A measurement system, capable of operationally and continuously providing the values of surface parameters, is implemented together with software procedures based on a float-PPP approach for estimating zenith path delay (ZPD) values. The values continuously registered over a three year period (2020–2022) from this infrastructure are compared with the data from a numerical meteorological reanalysis model (MERRA-2). The results clearly prove the ability of the system to estimate the ZPD from ship-based GNSS-meteo equipment, with the accuracy evaluated in terms of correlation and root mean square error reaching values between 0.94 and 0.65 and between 18.4 and 42.9 mm, these extreme values being from the best and worst performing installations, respectively. This offers a new perspective on the operational exploitation of GNSS signals over sea areas in climate and operational meteorological applications. Full article
(This article belongs to the Special Issue GNSS Software-Defined Radio Receivers: Status and Perspectives)
Show Figures

Figure 1

17 pages, 4902 KB  
Article
WTM: The Site-Wise Empirical Wuhan University Tropospheric Model
by Yaozong Zhou, Yidong Lou, Weixing Zhang, Peida Wu, Jingna Bai and Zhenyi Zhang
Remote Sens. 2022, 14(20), 5182; https://doi.org/10.3390/rs14205182 - 17 Oct 2022
Cited by 2 | Viewed by 2318
Abstract
The tropospheric model is the key model in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI). In this paper, we established the site-wise empirical Wuhan University Tropospheric Model (WTM) by using 10-year (2011–2020) monthly mean [...] Read more.
The tropospheric model is the key model in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI). In this paper, we established the site-wise empirical Wuhan University Tropospheric Model (WTM) by using 10-year (2011–2020) monthly mean and 5-year (2016–2020) hourly ERA5 reanalysis data, where the Zenith Path Delay (ZPD), mapping function, and horizontal gradient as well as meteorological parameters are provided at 1583 specific space geodetic stations with additionally considering the diurnal and semi-diurnal variations. The mapping function and horizontal gradient from the WTM model were evaluated at 524 globally distributed GNSS stations during the year 2020 and compared with the latest grid-wise (1° × 1°) Global Pressure and Temperature 3 (GPT3) model. The significant improvements of the WTM model to the GPT3 model were found at the stations with terrain relief, and the maximal mapping function and horizontal gradient accuracy improvements reached 12.8 and 14.71 mm. The ZPD and mapping functions from the two models were also validated at 31 Multi-GNSS Experiment (MGEX) stations spanning the year 2020 by BeiDou Navigation Satellite System (BDS) Precise Point Positioning (PPP). The significant vertical coordinate and ZTD difference biases between the PPP schemes adopted by the two models were also found, and the largest biases reached −1.78 and 0.87 mm. Full article
(This article belongs to the Special Issue Advances in Beidou/GNSS High Precision Positioning and Navigation)
Show Figures

Figure 1

21 pages, 43900 KB  
Article
Mitigation of Tropospheric Delay in SAR and InSAR Using NWP Data: Its Validation and Application Examples
by Xiaoying Cong, Ulrich Balss, Fernando Rodriguez Gonzalez and Michael Eineder
Remote Sens. 2018, 10(10), 1515; https://doi.org/10.3390/rs10101515 - 21 Sep 2018
Cited by 25 | Viewed by 7838
Abstract
The neutral atmospheric delay has a great impact on synthetic aperture radar (SAR) absolute ranging and on differential interferometry. In this paper, we demonstrate its effective mitigation by means of the direction integration method using two products from the European Centre for Medium-Range [...] Read more.
The neutral atmospheric delay has a great impact on synthetic aperture radar (SAR) absolute ranging and on differential interferometry. In this paper, we demonstrate its effective mitigation by means of the direction integration method using two products from the European Centre for Medium-Range Weather Forecast: ERA-Interim and operational data. Firstly, we shortly review the modeling of the neutral atmospheric delay for the direct integration method, focusing on the different refractivity models and constant coefficients available. Secondly, a thorough validation of the method is performed using two approaches. In the first approach, numerical weather prediction (NWP) derived zenith path delay (ZPD) is validated against ZPD from permanent GNSS (global navigation satellite system) stations on a global scale, demonstrating a mean accuracy of 14.5 mm for ERA-Interim. Local analysis shows a 1 mm improvement using operational data. In the second approach, NWP derived slant path delay (SPD) is validated against SAR SPD measured on corner reflectors in more than 300 TerraSAR-X High Resolution SpotLight acquisitions, demonstrating an accuracy in the centimeter range for both ERA-Interim and operational data. Finally, the application of this accurate delay estimate for the mitigation of the impact of the neutral atmosphere on SAR absolute ranging and on differential interferometry, both for individual interferograms and multi-temporal processing, is demonstrated. Full article
(This article belongs to the Special Issue Ten Years of TerraSAR-X—Scientific Results)
Show Figures

Figure 1

Back to TopTop