Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ZGP crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5074 KiB  
Article
Band-like Inhomogeneity in Bulk ZnGeP2 Crystals, and Composition and Influence on Optical Properties
by Alexey Lysenko, Nikolay N. Yudin, Margarita Khimich, Mikhail Zinovev, Elena Slyunko, Sergey Podzyvalov, Vladimir Kuznetsov, Andrey Kalsin, Maxim Kulesh, Houssain Baalbaki and Alexey Olshukov
Crystals 2025, 15(4), 382; https://doi.org/10.3390/cryst15040382 - 21 Apr 2025
Viewed by 482
Abstract
The influence of intrinsic impurities on the formation of band-like inhomogeneities in ZGP single crystals containing two highly volatile elements has been analyzed. It has been shown that the formation of growth bands occurs due to the accumulation of binary phosphides at the [...] Read more.
The influence of intrinsic impurities on the formation of band-like inhomogeneities in ZGP single crystals containing two highly volatile elements has been analyzed. It has been shown that the formation of growth bands occurs due to the accumulation of binary phosphides at the crystallization front and is accompanied by the formation of pores in the near-wall region of the ingot. A connection between near-wall pore formation and the presence of growth bands in ZGP has been established. X-ray spectrometry revealed differences in the chemical compositions of “light” and “dark” growth striations, with significant deviations from stoichiometry in these regions. The dark bands exhibited a higher phosphorus content compared to the light bands and showed an increased germanium content in the light bands. Differences in the orientation of crystallographic axes were observed between the light and dark regions. It has been shown that samples containing inclusions of band-like inhomogeneity significantly distort the profile of the radiation passing through and generated in the crystal and lead to pronounced astigmatism. However, in contrast to the extremely negative influence of banded inhomogeneity on the optical properties of single crystals, the influence of growth striations on the radiation resistance of crystals is minimal. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 3623 KiB  
Article
Modification of the Spectral Absorption Characteristics of ZnGeP2 in the THz and IR Wavelength Ranges Due to Diffusion Doping with Impurity Atoms of Mg, Se, Sn, and Pb
by Nikolay Yudin, Victor Dyomin, Sergey Podzyvalov, Alexey Lysenko, Houssain Baalbaki, Mikhail Zinovev, Vladimir Kuznetsov, Elena Slyunko, Akmal Gabdrakhmanov, Andrey Kalsin, Vladimir Voevodin, Maxim Kulesh and Denis Vlasov
Crystals 2024, 14(10), 867; https://doi.org/10.3390/cryst14100867 - 30 Sep 2024
Cited by 2 | Viewed by 1032
Abstract
This study demonstrates that diffusion doping of ZGP single crystals with impurity atoms (Mg, Se, Sn, Pb) leads to a decrease in the specific conductivity of the samples. Consequently, this results in reduced absorption in the terahertz frequency range (150–1000 μm). It has [...] Read more.
This study demonstrates that diffusion doping of ZGP single crystals with impurity atoms (Mg, Se, Sn, Pb) leads to a decrease in the specific conductivity of the samples. Consequently, this results in reduced absorption in the terahertz frequency range (150–1000 μm). It has been shown that doping ZGP samples with selenium (Se) and lead (Pb) atoms reduces absorption in the infrared region from 0.3–0.6 cm−1 to 0.06–0.09 cm−1. Doping with tin (Sn) leads to a decrease in absorption only in the wavelength region near 2.1 μm from 0.2 cm−1 to 0.05 cm−1. The proposed mechanism for the decrease in infrared absorption is a reduction in zinc vacancies due to doping with impurity atoms. This research lays the groundwork for a technology that produces ZGP crystals with minimal absorption within the 2–8 μm wavelength range, eliminating the need for fast electron beam irradiation technology. This advancement will facilitate the fabrication of ZGP crystals with arbitrary apertures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 6945 KiB  
Article
Crystal ZnGeP2 for Nonlinear Frequency Conversion: Physical Parameters, Phase-Matching and Nonlinear Properties: Revision
by Sergey G. Grechin and Ilyia A. Muravev
Photonics 2024, 11(5), 450; https://doi.org/10.3390/photonics11050450 - 11 May 2024
Cited by 2 | Viewed by 1506
Abstract
The article presents a comparative analysis of published data for the physical parameters of the ZGP (ZnGeP2) crystal, its nonlinear and phase-matching properties, and functional capabilities for all frequency conversion processes (harmonics, sum and difference frequencies, and parametric generation). At the [...] Read more.
The article presents a comparative analysis of published data for the physical parameters of the ZGP (ZnGeP2) crystal, its nonlinear and phase-matching properties, and functional capabilities for all frequency conversion processes (harmonics, sum and difference frequencies, and parametric generation). At the first time, the possibilities for obtaining the temperature-noncritical processes for some combinations of wavelengths are shown. Full article
Show Figures

Figure 1

8 pages, 2092 KiB  
Article
Gain Measurement of ZnGeP2 Optical Parametric Oscillator Pulses in a High-Pressure CO2 Amplifier
by Ziren Zhu, Yu Liu, Jinghan Ye, Juntao Tian, Tianjian Wan, Jinzhou Bai, Yijun Zheng, Rongqing Tan, Zhiyong Li and Xinjun Su
Photonics 2024, 11(2), 154; https://doi.org/10.3390/photonics11020154 - 5 Feb 2024
Cited by 1 | Viewed by 1628
Abstract
Laser pulse amplification by a high-pressure CO2 amplifier in the long-wave infrared (LWIR) spectral range is a feasible technology for strong-field physics research. Crystals such as ZnGeP2 (ZGP) have high nonlinear coefficients and transmittance in the LWIR region, with spectral widths [...] Read more.
Laser pulse amplification by a high-pressure CO2 amplifier in the long-wave infrared (LWIR) spectral range is a feasible technology for strong-field physics research. Crystals such as ZnGeP2 (ZGP) have high nonlinear coefficients and transmittance in the LWIR region, with spectral widths of generated pulses closely matching the gain spectrum of high-pressure CO2 amplifiers. Therefore, ZGP optical parametric oscillation (OPO) may allow higher-efficiency energy extraction in amplifiers, improving the output characteristics of LWIR amplification systems. In this study, the gain measurement of ZGP OPO pulses amplified by a high-pressure CO2 amplifier was carried out for the first time. Single-detector acquisition was utilized to achieve a unified sensor responsivity, and a laser signal-triggered function generator was used to synchronize the seed pulse and amplifier. Six-pass amplification was performed successively, yielding an amplification factor of 4.5 for the peak power and a maximum coefficient of 0.42% cm−1 for the small-signal gain. The gain and loss effect during small-signal amplification were discussed. The potential capability of acquiring ultra-short pulses with ZGP OPO pulses was also explored with the FFT function of MATLAB software. Full article
Show Figures

Figure 1

13 pages, 9314 KiB  
Article
Experimental Investigation of Laser Damage Limit for ZPG Infrared Single Crystal Using Deep Magnetorheological Polishing of Working Surfaces
by Nikolay N. Yudin, Andrei Khudoley, Mikhail Zinovev, Elena Slyunko, Sergey Podzyvalov, Vladimir Kuznetsov, Gennady Gorodkin, Pavel Kumeysha, Alexey Lysenko, Andrey Kalsin, Akmal Gabdrakhmanov, Oleg A. Romanovskii, Sergey Kashevsky and Houssain Baalbaki
Crystals 2024, 14(1), 32; https://doi.org/10.3390/cryst14010032 - 27 Dec 2023
Cited by 4 | Viewed by 1670
Abstract
Zinc germanium phosphide (ZGP) crystals have garnered significant attention for their nonlinear properties, making them good candidates for powerful mid-IR optical parametric oscillators and second-harmonic generators. A ZnGeP2 single crystal was treated by deep magnetorheological processing (MRP) until an Angstrom level of [...] Read more.
Zinc germanium phosphide (ZGP) crystals have garnered significant attention for their nonlinear properties, making them good candidates for powerful mid-IR optical parametric oscillators and second-harmonic generators. A ZnGeP2 single crystal was treated by deep magnetorheological processing (MRP) until an Angstrom level of roughness. The studies presented in this article are devoted to the experimental evaluation of the influence of deep removal (up to 150 μm) from the surface of a ZnGeP2 single crystal by magnetorheological polishing on the parameters of optical breakdown. It was shown that the dependence of the ZnGeP2 laser-induced damage threshold on MRP depth is a smooth monotonically decreasing logarithmic function. The obtained logarithmic dependence indicates the thermal nature of optical breakdown and the dependence of the ZnGeP2 laser-induced damage threshold on the concentration of surface absorbing defects. Full article
(This article belongs to the Special Issue Laser Surface Modification of Materials)
Show Figures

Figure 1

26 pages, 10199 KiB  
Review
Physical and Technological Aspects of Laser-Induced Damage of ZGP Single Crystals under Periodically Pulsed Laser Irradiation at 2.1 μm
by Nikolay Yudin N. Yudin, Victor Dyomin, Alexander Gribenyukov, Oleg Antipov, Andrei Khudoley, Igor O. Kinyaevskiy, Mikhail Zinovev, Sergey Podzyvalov, Vladimir Kuznetsov, Elena Slyunko, Alexey Lysenko, Andrey Kalsin, Ilya Eranov and Houssain Baalbaki
Photonics 2023, 10(12), 1364; https://doi.org/10.3390/photonics10121364 - 11 Dec 2023
Cited by 4 | Viewed by 2152
Abstract
The nonlinear properties of zinc germanium diphosphide (ZGP) crystals enable their applications in powerful mid-IR optical parametric oscillators and second-harmonic generators. This paper summarizes the mechanisms of the laser-induced damage (LID) of high-purity ZGP crystals under periodically pulsed nanosecond irradiation by a Ho [...] Read more.
The nonlinear properties of zinc germanium diphosphide (ZGP) crystals enable their applications in powerful mid-IR optical parametric oscillators and second-harmonic generators. This paper summarizes the mechanisms of the laser-induced damage (LID) of high-purity ZGP crystals under periodically pulsed nanosecond irradiation by a Ho3+:YAG laser at 2.1 μm. The ZGP samples were manufactured by “LOC” Ent., Tomsk, Russia, or the Harbin Institute of Technology, China. The impact of processing techniques and the post-growing methods for polishing and anti-reflective coatings on the LID threshold are discussed. The importance of the defect structure of the crystal lattice and the parameters of transparent coatings for increasing the LID threshold are also discussed. The impact of the test laser parameters on the LID threshold and the transient area near the LID threshold obtained using digital holography are analyzed. The influence of the pre-damage processes on the optical parametric oscillations is reported. Lastly, the prospects for improving ZGP crystals to further increase the LID threshold are discussed. Full article
Show Figures

Figure 1

16 pages, 5433 KiB  
Article
Three-Dimensional Simulation of Melt Convection and Oxygen Transport in CZ-Si Crystal Growth with Cusp Magnetic Fields
by Xianrong Cen and Shuangxi Guo
Crystals 2023, 13(10), 1436; https://doi.org/10.3390/cryst13101436 - 27 Sep 2023
Cited by 3 | Viewed by 1948
Abstract
The application of magnetic fields has become a standard control technique in the CZ-Si growth industry. To investigate the impact of cusp-shaped magnetic fields (CMF) on heat and mass transfer in the melt, a series of transient three-dimensional simulations were conducted for the [...] Read more.
The application of magnetic fields has become a standard control technique in the CZ-Si growth industry. To investigate the impact of cusp-shaped magnetic fields (CMF) on heat and mass transfer in the melt, a series of transient three-dimensional simulations were conducted for the growth of a 100 mm CZ-Si crystal with a cylindrical crucible. The turbulent melt motion was modeled using the large eddy simulation (LES) method. Six configurations of CMF with various zero-Gaussian plane (ZGP) positions were examined and numerically compared. The computed results showed that different ZGP positions resulted in distinct types of melt convection, buoyant plumes, and thermal waves. Additionally, it was observed that the studied CMF configurations effectively reduced oxygen dissolution from the crucible wall along with oxygen impurity incorporation into the crystal. These findings demonstrate the potential for precise control of the heat and mass transfer process in CZ-Si growth through the application of suitable CMF. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Modeling in Crystal Growth)
Show Figures

Figure 1

15 pages, 4819 KiB  
Article
Investigation of Oxygen Behavior under Different Melt Flow, Diffusion Boundary Layer, and Crystal-Melt Interface in a 300 mm Silicon Crystal Growth with Cusp Magnetic Field
by Chenguang Sun, Xingtian Ai, Hui Zhang, Hungpang Chou, Huiyun Lyu and Guifeng Chen
Coatings 2023, 13(9), 1634; https://doi.org/10.3390/coatings13091634 - 18 Sep 2023
Cited by 1 | Viewed by 2707
Abstract
The silicon single crystals for semiconductor application are usually grown by the Czochralski (CZ) method. In this paper, we studied a 300 mm Czochralski silicon crystal grown with a cusp magnetic field to be used for an insulated gate bipolar transistor (IGBT). Different [...] Read more.
The silicon single crystals for semiconductor application are usually grown by the Czochralski (CZ) method. In this paper, we studied a 300 mm Czochralski silicon crystal grown with a cusp magnetic field to be used for an insulated gate bipolar transistor (IGBT). Different positions of the zero-Gauss plane (ZGP) under a cusp magnetic field were simulated and compared to numerical analysis. We investigated three factors that affected the oxygen concentration in the crystal, including (1) melt convection, (2) melt flow velocity near the quartz crucible wall, and (3) the diffusion boundary layer. We also studied the shape of the solid/liquid interface at the same time. The simulation results show that a change in the ZGP of the cusp magnetic field (CMF) strongly affects the convection in the melt, which leads to a difference in the thickness of the boundary layer near the wall of the quartz crucible. We investigated the relationship of the ZGP, convection in the melt, and the thickness of the boundary layer. In this way, we determined how to reduce oxygen diffusing into the melt and finally into the crystal. After simulation results were obtained, we pulled single crystals under the three configurations. The results show that the experimental data of the oxygen content and shape of the solid/liquid interfaces are consistent with the simulation results. Full article
Show Figures

Figure 1

7 pages, 1393 KiB  
Communication
Nanohardness Measurements of CdSiP2 and ZnGeP2 Chalcopyrite-Type Nonlinear Optical Crystals
by Ginka Exner, Aleksandar Grigorov, Elizabeth Ivanova, Peter Schunemann, Vladimir Tassev, Kevin Zawilski and Valentin Petrov
Crystals 2023, 13(8), 1164; https://doi.org/10.3390/cryst13081164 - 26 Jul 2023
Cited by 1 | Viewed by 1510
Abstract
We study the nanohardness and Young’s modulus of randomly oriented CdSiP2 (CSP) and ZnGeP2 (ZGP) single crystals, grown via the horizontal Bridgman method. CSP and ZGP are the only two pnictide chalcopyrites widely used as nonlinear optical crystals in the mid-IR [...] Read more.
We study the nanohardness and Young’s modulus of randomly oriented CdSiP2 (CSP) and ZnGeP2 (ZGP) single crystals, grown via the horizontal Bridgman method. CSP and ZGP are the only two pnictide chalcopyrites widely used as nonlinear optical crystals in the mid-IR part of the spectrum. Nanoindentation is employed in the continuous stiffness mode (45 Hz, 2 nm) using a Berkovich tip. Nanohardness values of 9.9 ± 0.2 GPa (Knoop hardness of 905 kg/mm2) for CSP and 11.5 ± 0.1 GPa (993 kg/mm2) for ZGP are derived. For Young’s modulus, we obtain 136 ± 2 GPa (CSP) and 150 ± 2 GPa (ZGP). The trend of increasing hardness with bandgap and melting point of the isostructural CSP and ZGP, as deduced from previous measurements, is not confirmed. The results for ZGP are compared to 2GaP, its binary isoelectronic analog, and the values obtained, 11.0 ± 0.3 GPa for the nanohardness and 154 ± 2 GPa for Young’s modulus, indicate good matching within the accuracy limits. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

10 pages, 2001 KiB  
Article
Optical AR Coatings of the Mid-IR Band for ZnGeP2 Single Crystals Based on ZnS and Oxide Aluminum
by Mikhail Zinoviev, Nikolai Nikolayevich Yudin, Sergey Podzvalov, Elena Slyunko, Nikolai Aleksandrovich Yudin, Maksim Kulesh, Igor Dorofeev and Houssain Baalbaki
Crystals 2022, 12(8), 1169; https://doi.org/10.3390/cryst12081169 - 19 Aug 2022
Cited by 8 | Viewed by 2251
Abstract
In this work, the parameters of antireflection interference coatings based on alternating layers of ZnS/Al2O3 on the laser-induced damage threshold (LIDT) of ZGP crystals under the action of Ho:YAG laser radiation at a wavelength of 2.097 μm were determined. The [...] Read more.
In this work, the parameters of antireflection interference coatings based on alternating layers of ZnS/Al2O3 on the laser-induced damage threshold (LIDT) of ZGP crystals under the action of Ho:YAG laser radiation at a wavelength of 2.097 μm were determined. The coating deposition was carried out using the ion-beam sputtering method. The LIDT of the sample with a coating based on alternating layers ZnS and Al2O3 was equal to WoE = 3.45 J/cm2, and the LIDT of the uncoated sample was equal to WoE = 2.23 J/cm2. An increase in the optical breakdown threshold by ~55% was observed after the deposition of an AR coating based on ZnS and Al2O3 materials. An assumption was made about the absence of local fluctuations in the composition and mechanical stresses in the case of the coated sample, namely that this leads to good adhesion of the multilayer coating to the polished surface of the crystal, and as a result to an increase in the optical breakdown threshold as compared to the uncoated sample due to closure of the dangling chemical bonds and bulk defects emerging on the polished surface. Full article
(This article belongs to the Special Issue Single-Crystalline Composition Materials)
Show Figures

Figure 1

12 pages, 3529 KiB  
Article
Influence of the Characteristics of Multilayer Interference Antireflection Coatings Based on Nb, Si, and Al Oxides on the Laser-Induced Damage Threshold of ZnGeP2 Single Crystal
by Nikolai Nikolayevich Yudin, Mikhail Zinoviev, Vladislav Gladkiy, Evgeny Moskvichev, Igor Kinyaevsky, Sergey Podzyvalov, Elena Slyunko, Elena Zhuravleva, Anastasia Pfaf, Nikolai Aleksandrovich Yudin and Maxim Kulesh
Crystals 2021, 11(12), 1549; https://doi.org/10.3390/cryst11121549 - 10 Dec 2021
Cited by 14 | Viewed by 2603
Abstract
In this work, the effect of the defect structure and the parameters of antireflection interference coatings based on alternating layers of Nb2O5/Al2O3 and Nb2O5/SiO2 layers on the laser-induced damage threshold of [...] Read more.
In this work, the effect of the defect structure and the parameters of antireflection interference coatings based on alternating layers of Nb2O5/Al2O3 and Nb2O5/SiO2 layers on the laser-induced damage threshold of ZGP crystals under the action of Ho:YAG laser radiation at a wavelength of 2.097 μm was determined. Coating deposition was carried out using the ion-beam sputtering method. The laser-induced damage threshold of the sample with a coating based on alternating layers Nb2O5 and SiO2 was W0d = 1.8 J/cm2. The laser-induced damage threshold of the coated sample based on alternating layers of Nb2O5 and Al2O3 was W0d = 2.35 J/cm2. It has been found that the presence of silicon conglomerates in an interference antireflection coating leads to a decrease in the laser-induced damage threshold of a nonlinear crystal due to local mechanical stresses and the scattering of incident laser radiation. Full article
(This article belongs to the Special Issue Advances in Middle Infrared Laser Crystals and Its Applications)
Show Figures

Figure 1

7 pages, 13900 KiB  
Article
A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal
by Chuanpeng Qian, Ting Yu, Jing Liu, Yuyao Jiang, Sijie Wang, Xiangchun Shi, Xisheng Ye and Weibiao Chen
Crystals 2021, 11(6), 656; https://doi.org/10.3390/cryst11060656 - 9 Jun 2021
Cited by 14 | Viewed by 3525
Abstract
In this paper, we present a high-energy, narrow pulse-width, long-wave infrared laser based on a ZnGeP2 (ZGP) optical parametric oscillator (OPO). The pump source is a 2.1 μm three -stage Ho:YAG master oscillator power-amplifier (MOPA). At a repetition frequency of 1 kHz, [...] Read more.
In this paper, we present a high-energy, narrow pulse-width, long-wave infrared laser based on a ZnGeP2 (ZGP) optical parametric oscillator (OPO). The pump source is a 2.1 μm three -stage Ho:YAG master oscillator power-amplifier (MOPA). At a repetition frequency of 1 kHz, the Ho:YAG MOPA system outputs the maximal average power of 52.1 W, which corresponds to the shortest pulse width of 14.40 ns. By using the Ho:YAG MOPA system as the pump source, the maximal average output powers of 3.15 W at 8.2 μm and 11.4 W at 2.8 μm were achieved in a ZGP OPO. The peak wavelength and linewidth (FWHM) of the long-wave infrared laser were 8156 nm and 270 nm, respectively. At the maximal output level, the pulse width and beam quality factor M2 were measured to be 8.10 ns and 6.2, respectively. Full article
(This article belongs to the Special Issue Advances in Middle Infrared Laser Crystals and Its Applications)
Show Figures

Figure 1

Back to TopTop