Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = YXXΦ motif

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4788 KB  
Article
The Role of the Tyrosine-Based Sorting Signals of the ORF3a Protein of SARS-CoV-2 in Intracellular Trafficking and Pathogenesis
by Edward B. Stephens, Dusan Kunec, Wyatt Henke, Ricardo Martin Vidal, Brandon Greishaber, Rabina Saud, Maria Kalamvoki, Gagandeep Singh, Sujan Kafle, Jessie D. Trujillo, Franco Matias Ferreyra, Igor Morozov and Juergen A. Richt
Viruses 2025, 17(4), 522; https://doi.org/10.3390/v17040522 - 3 Apr 2025
Cited by 2 | Viewed by 1232
Abstract
The open reading frame 3a (ORF3a) is a protein important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (160YNSV163, 211YYQL213, and 233YNKI236), and a previous study has indicated that mutation of the 160YNSV163 motif abrogated [...] Read more.
The open reading frame 3a (ORF3a) is a protein important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (160YNSV163, 211YYQL213, and 233YNKI236), and a previous study has indicated that mutation of the 160YNSV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. Here, we have systematically removed all three tyrosine-based motifs and assessed the importance of each motif or combination of motifs in trafficking to the cell surface. Our results indicate that the 160YNSV163 motif alone was insufficient for ORF3a cell-surface trafficking, while the 211YYQL213 motif was the most important. Additionally, an ORF3a with all three YxxΦ motifs disrupted (ORF3a-[ΔYxxΦ]) was not transported to the cell surface, and LysoIP studies indicate that ORF3a but not ORF3a-[ΔYxxΦ] was present in late endosome/lysosome fractions. A growth-curve analysis of different SARS-CoV-2 viruses expressing the different mutant ORF3a proteins revealed no significant differences in virus replication. Finally, the inoculation of K18hACE-2 mice indicated that the SARS-CoV-2 lacking the three YxxΦ motifs was less pathogenic than the unmodified SARS-CoV-2. These results indicate that the tyrosine motifs of ORF3a contribute to cell-surface expression and SARS-CoV-2 pathogenesis Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

16 pages, 3086 KB  
Article
Residence of the Nucleotide Sugar Transporter Family Members SLC35F1 and SLC35F6 in the Endosomal/Lysosomal Pathway
by François Van den Bossche, Virginie Tevel, Florentine Gilis, Jean-François Gaussin, Marielle Boonen and Michel Jadot
Int. J. Mol. Sci. 2024, 25(12), 6718; https://doi.org/10.3390/ijms25126718 - 18 Jun 2024
Cited by 4 | Viewed by 2325
Abstract
The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal [...] Read more.
The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

26 pages, 5700 KB  
Article
Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus—Host Interactions
by Athanassios Kakkanas, Eirini Karamichali, Efthymia Ioanna Koufogeorgou, Stathis D. Kotsakis, Urania Georgopoulou and Pelagia Foka
Biomolecules 2022, 12(8), 1052; https://doi.org/10.3390/biom12081052 - 29 Jul 2022
Cited by 5 | Viewed by 3355
Abstract
The emerging SARS-CoV and SARS-CoV-2 belong to the family of “common cold” RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for [...] Read more.
The emerging SARS-CoV and SARS-CoV-2 belong to the family of “common cold” RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue—L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific—yet to be discovered—functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence. Full article
(This article belongs to the Special Issue Theme Issue Honoring Scientist Louis Pasteur on His 200th Birthday)
Show Figures

Figure 1

20 pages, 4676 KB  
Article
Importance of Endocytosis for the Biological Activity of Cedar Virus Fusion Protein
by Kerstin Fischer, Martin H. Groschup and Sandra Diederich
Cells 2020, 9(9), 2054; https://doi.org/10.3390/cells9092054 - 8 Sep 2020
Cited by 8 | Viewed by 3970
Abstract
Endocytosis plays a particular role in the proteolytic activation of highly pathogenic henipaviruses Hendra (HeV) and Nipah virus (NiV) fusion (F) protein precursors. These proteins require endocytic uptake from the cell surface to be cleaved by cellular proteases within the endosomal compartment, followed [...] Read more.
Endocytosis plays a particular role in the proteolytic activation of highly pathogenic henipaviruses Hendra (HeV) and Nipah virus (NiV) fusion (F) protein precursors. These proteins require endocytic uptake from the cell surface to be cleaved by cellular proteases within the endosomal compartment, followed by recycling to the plasma membrane for incorporation into budding virions or mediation of cell-cell fusion. This internalization largely depends on a tyrosine-based consensus motif for endocytosis present in the cytoplasmic tail of HeV and NiV F. Given the large number of tyrosine residues present in the F protein cytoplasmic domain of Cedar virus (CedV), a closely related but low pathogenic henipavirus, we aimed to investigate whether CedV F protein undergoes signal-mediated endocytosis from the cell surface controlled by tyrosine-based motifs present in its cytoplasmic tail and whether endocytosis is relevant for its biological activity. Therefore, tyrosine-based signals were mutated, and mutations were assessed for their effect on F cell surface expression, endocytosis, and biological activity. A membrane-proximal YXXΦ motif and a C-terminal di-tyrosine motif are of particular importance for cell surface expression and endocytosis rate. Furthermore, our data strongly indicate the pivotal role of endocytosis for the biological activity of the CedV F protein. Full article
(This article belongs to the Special Issue Cell Biology of Viral Infections)
Show Figures

Figure 1

Back to TopTop