Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Xitian mining district

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5214 KiB  
Article
Application of Spread-Spectrum Induced Polarization (SSIP) Technology in W-Sn Mineral Exploration (Xitian Mining District, SE China)
by Xiaoqiang Li, Haifei Liu, Yingjie Zhao, Yuhao Zhang and Daowei Zhu
Appl. Sci. 2025, 15(12), 6480; https://doi.org/10.3390/app15126480 - 9 Jun 2025
Viewed by 378
Abstract
As strategic critical metals, tungsten (W) and tin (Sn) require efficient exploration methods for effective resource development. This study implemented an advanced spread-spectrum induced polarization (SSIP) method in the Xitian mining district of southern China. Through optimized survey system configuration (maximum current electrode [...] Read more.
As strategic critical metals, tungsten (W) and tin (Sn) require efficient exploration methods for effective resource development. This study implemented an advanced spread-spectrum induced polarization (SSIP) method in the Xitian mining district of southern China. Through optimized survey system configuration (maximum current electrode spacing of 5200 m, 12-channel acquisition, and five discrete frequency points), we achieved significant advancements: (1) a penetration depth of 1200 m, and (2) three- to five-times higher data acquisition efficiency compared to conventional symmetrical quadrupole arrays. Inversion results of resistivity and chargeability profiles from two parallel survey lines (total length 2.4 km) demonstrated an 85% spatial correlation between resistivity and chargeability anomalies, successfully identifying three mineralized veins. Drill-hole verification confirmed the presence of greisen veins (characterized by low resistivity <100 Ωm and high chargeability > 3%) and skarn veins (moderate resistivity 150–200 Ωm and chargeability 1.5–2%). The method exhibits a detection sensitivity of 0.5% chargeability contrast for deep-seated W-Sn polymetallic deposits, providing quantitative technical references for similar deposit exploration. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop