Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Woeseia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4012 KiB  
Article
Study on the Microflora Structure in a Litopenaeus vannameiSinonovacula constricta Tandem-Culture Model Based on High-Throughput Sequencing under Different Culture Densities
by Chunpu Zhao, Jilin Xu, Shanliang Xu, Gege Bao and Danli Wang
Fishes 2023, 8(6), 287; https://doi.org/10.3390/fishes8060287 - 26 May 2023
Cited by 2 | Viewed by 1539
Abstract
In this study, we evaluated the intestinal contents of Pacific whiteleg shrimp (Litopenaeus vannamei), the visceral mass of razor clams (Sinonovacula constricta) and the water columns and the substrate sediments in different culture-density groups in a L. vannamei [...] Read more.
In this study, we evaluated the intestinal contents of Pacific whiteleg shrimp (Litopenaeus vannamei), the visceral mass of razor clams (Sinonovacula constricta) and the water columns and the substrate sediments in different culture-density groups in a L. vannameiS. constricta tandem-culture model by high-throughput sequencing of the 16S rRNA gene. The results show that the culture density affected the bacterial floral structure of the water columns, substrate sediment and razor-clam gut masses without making significant differences in the bacterial flora structure of the shrimp gut; the Shannon diversity indexes of the bacterial communities in the substrate sediment, shrimp gut and razor-clam gut masses were not significantly different among the density groups, and the Shannon diversity index of the bacterial communities in the water column was higher in the group with higher culture densities; at the phylum level, the dominant bacteria common to the shrimp guts, razor-clam visceral mass, water columns and substrate sediment were Proteobacteria and Bacteroidetes; Chloroflexi was the dominant bacterium specific to the substrate sediment; and Firmicutes was the dominant bacterium specific to the shrimp gut and razor-clam gut mass. We used national standards (GB 17378.4-2007, China) to evaluate the content of water-quality factors through the environmental factors and the genus-level correlation analysis of bacterial flora that follow: the dominant bacterium in the water column, uncultured_bacterium_f_Rhodobacteraceae, was negatively correlated with PO43−-P; the dominant bacteria in the substrate sediments, uncultured_bacterium_f_Anaerolineaceae and Woeseia, were significantly and negatively correlated with DO; and the dominant bacteria Lactococcus spp. in the razor-clam gut mass and the shrimp intestines were positively correlated with DO. These results show that culture density directly affects water-quality factors, which in turn affect the culture environment and the composition structure of the bacterial flora in a cultured organism. Full article
Show Figures

Figure 1

19 pages, 4647 KiB  
Article
Metagenomes from Coastal Sediments of Kuwait: Insights into the Microbiome, Metabolic Functions and Resistome
by Nazima Habibi, Saif Uddin, Hanan Al-Sarawi, Ahmed Aldhameer, Anisha Shajan, Farhana Zakir, Nasreem Abdul Razzack and Faiz Alam
Microorganisms 2023, 11(2), 531; https://doi.org/10.3390/microorganisms11020531 - 20 Feb 2023
Cited by 20 | Viewed by 5011
Abstract
Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting [...] Read more.
Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting in undesirable effects on ecosystem functioning, thus necessitating the need to understand their composition and functions. In the present investigation, we studied the metagenomes of 12 coastal surface sediments through whole genome shot-gun sequencing. Taxonomic binning of the genes predicted about 86% as bacteria, 1% as archaea, >0.001% as viruses and Eukaryota, and 12% as other communities. The dominant bacterial, archaeal, and fungal genera were Woeseia, Nitrosopumilus, and Rhizophagus, respectively. The most prevalent viral families were Myoviridae and Siphoviridae, and the T4 virus was the most dominant bacteriophage. The unigenes further aligned to 26 clusters of orthologous genes (COGs) and five carbohydrate-active enzymes (CAZy) classes. Glycoside hydrolases (GH) and glycoside transferase (GT) were the highest-recorded CAzymes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 functions were subjugated by purine metabolism > ABC transporters > oxidative phosphorylation > two-component system > pyrimidine metabolism > pyruvate metabolism > quorum sensing > carbon fixation pathways > ribosomes > and glyoxalate and dicarboxylate metabolism. Sequences allying with plasmids, integrons, insertion sequences and antibiotic-resistance genes were also observed. Both the taxonomies and functional abundances exhibited variation in relative abundances, with limited spatial variability (ANOVA p > 0.05; ANOSIM-0.05, p > 0.05). This study underlines the dominant microbial communities and functional genes in the marine sediments of Kuwait as a baseline for future biomonitoring programs. Full article
(This article belongs to the Collection Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

13 pages, 3912 KiB  
Article
Effect of Parthenium hysterophorus L. Invasion on Soil Microbial Communities in the Yellow River Delta, China
by Shuai Shang, Zaiwang Zhang, Liping Zhao, Longxiang Liu, Dongli Shi, Hui Xu, Hanjie Zhang, Wenjun Xie, Fengjuan Zhao, Zhihao Zhou, Jikun Xu and Jun Wang
Microorganisms 2023, 11(1), 18; https://doi.org/10.3390/microorganisms11010018 - 21 Dec 2022
Cited by 6 | Viewed by 2428
Abstract
Parthenium hysterophorus L., as an invasive plant, has negatively impacted the ecosystem functioning and stability of the terrestrial ecosystem in China. However, little information was available for its effects on microorganisms in the Yellow River Delta (YRD), the biggest newly-formed wetland in China. [...] Read more.
Parthenium hysterophorus L., as an invasive plant, has negatively impacted the ecosystem functioning and stability of the terrestrial ecosystem in China. However, little information was available for its effects on microorganisms in the Yellow River Delta (YRD), the biggest newly-formed wetland in China. In the present study, high-throughput sequencing technology was used to obtain the bacterial community in soils and roots of different plant species, including P. hysterophorus and some native ones in the YRD. Our results showed that the Proteobacteria, Acidobacteriota, Gemmatimonadota, and Actinobacteriota were dominant in the rhizosphere soils of P. hysterophorus (84.2%) and Setaria viridis (86.47%), and the bulk soils (80.7%). The Proteobacteria and Actinobacteriota were dominant within the root of P. hysterophorus. A total of 2468 bacterial OTUs were obtained from different groups among which 140 were observed in all the groups; 1019 OTUs were shared by P. hysterophorus non-rhizosphere soil bacteria (YNR) P. hysterophorus rhizosphere soil bacteria (YRR) groups. The indexes of the ACE (823.1), Chao1 (823.19), Simpson (0.9971), and Shannon (9.068) were the highest in the YRR groups, showing the greatest bacterial community diversity. Random forest analysis showed that the Methylomirabilota and Dadabacteria (at the phylum level) and the Sphingomonas, and Woeseia (at the genus level) were identified as the main predictors among different groups. The LEfSe results also showed the essential role of the Acidobacteriota in the YRR group. The SourceTracker analysis of the bacterial community of the YRR group was mainly from GBS groups (average 53.14%) and a small part was from YNR groups (average 6.56%), indicating that the P. hysterophorus invasion had a more significant effect on native plants’ rhizosphere microorganisms than soil microorganisms. Our observations could provide valuable information for understanding the bacterial diversity and structure of the soil to the invasion of P. hysterophorus. Full article
(This article belongs to the Special Issue Plant-Bacteria Interactions)
Show Figures

Figure 1

12 pages, 2238 KiB  
Article
Diversity and Structure of Vegetation Rhizosphere Bacterial Community in Various Habitats of Liaohekou Coastal Wetlands
by Yinchu Liu, Zhen Guo, Peidong Zhang, Jun Du, Ping Gao and Zhiwei Zhang
Sustainability 2022, 14(24), 16396; https://doi.org/10.3390/su142416396 - 7 Dec 2022
Cited by 12 | Viewed by 2317
Abstract
Coastal wetlands are a type of unique ecosystem, in which rhizosphere microorganisms of vegetation play a significant role in the overall ecology. Rhizosphere soil samples from the vegetation of Liaohekou Coastal Wetlands, Northeast China (40°54′44″ N, 121°47′51″ E), were collected in seven habitats [...] Read more.
Coastal wetlands are a type of unique ecosystem, in which rhizosphere microorganisms of vegetation play a significant role in the overall ecology. Rhizosphere soil samples from the vegetation of Liaohekou Coastal Wetlands, Northeast China (40°54′44″ N, 121°47′51″ E), were collected in seven habitats (Suaeda and Phragmites community in different coverage, aquaculture ponds and farmland biotopes) to evaluate the diversity and structure of bacterial community using high throughput sequencing. Soil physicochemical characteristics and bacterial communities were found to be affected by vegetation coverage by ANOVA tests. As and Ni were the main heavy metal variables affecting the bacterial communities as demonstrated by RDA tests, while NO3-N were important variables in nutrient factors. Proteobacteria was the predominant phylum in all soils. Gillisia and Woeseia were the two most dominant genera peculiarly in Suaeda and Phragmites community. Meanwhile SparCC showed that Woeseia play a dominant role in wetland rhizosphere bacterial communities. The Chemoheterotrophic function was dominant in all communities with FAPROTAX results, while in wetland the cycle of Sulfur and Nitrogen were significantly affected by vegetation type and coverage. In conclusion, this study revealed the structural composition and diversity of rhizosphere bacterial communities under different vegetation types and coverage. This research could help deepen our understanding of the microbial ecology on the wetlands and provide information on bacterial communities in various habitats. Full article
Show Figures

Figure 1

16 pages, 2181 KiB  
Article
Diversity and Taxonomy of Soil Bacterial Communities in Urban and Rural Mangrove Forests of the Panama Bay
by Indira J. Quintero, Anakena M. Castillo and Luis C. Mejía
Microorganisms 2022, 10(11), 2191; https://doi.org/10.3390/microorganisms10112191 - 4 Nov 2022
Cited by 16 | Viewed by 3495
Abstract
Mangrove ecosystems are threatened worldwide by a wide range of factors including climate change, coastal development, and pollution. The effects of these factors on soil bacterial communities of Neotropical mangroves and their temporal dynamics is largely undocumented. Here we compared the diversity and [...] Read more.
Mangrove ecosystems are threatened worldwide by a wide range of factors including climate change, coastal development, and pollution. The effects of these factors on soil bacterial communities of Neotropical mangroves and their temporal dynamics is largely undocumented. Here we compared the diversity and taxonomic composition of bacterial communities in the soil of two mangrove forest sites of the Panama Bay: Juan Diaz (JD), an urban mangrove forest in Panama City surrounded by urban development, with occurrence of five mangrove species, and polluted with solid waste and sewage; and Bayano (B), a rural mangrove forest without urban development, without solid waste pollution, and with the presence of two mangrove species. Massive amplicon sequencing of the V4 region of the 16S rRNA gene and community analyses were implemented. In total, 20,691 bacterial amplicon sequence variants were identified, and the bacterial community was more diverse in the rural mangrove forest based on Faith’s phylogenetic diversity index. The three dominant phyla of bacteria found and shared between the two sites were Proteobacteria, Desulfobacterota, and Chloroflexi. The ammonia oxidizing archaea class Nitrosphaeria was found among the top 10 most abundant. Dominant genera of bacteria that occurred in the two mangrove sites were: BD2-11_terrestrial_group (Gemmatimonadota), EPR3968-O8a-Bc78 (Gammaproteobacteria), Salinimicrobium (Bacteroidetes), Sulfurovum (Campylobacteria), and Woeseia (Gammaproteobacteria) of which the first three and Methyloceanibacter had increased in relative abundance in the transition from rainy to dry to rainy season in the urban mangrove forest. Altogether, our study suggests that factors such as urban development, vegetation composition, pollution, and seasonal changes may cause shifts in bacterial diversity and relative abundance of specific taxa in mangrove soils. In particular, taxa with roles in biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus, and on rhizosphere taxa, could be important for mangrove plant resilience to environmental stress. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

9 pages, 1824 KiB  
Article
Bacterial Community in the Gut of Neanthes japonica and Its Association with Surrounding Environment
by Shuai Shang, Liangyu Li, Xiaoxue Liu, Jun Wang and Xuexi Tang
Diversity 2022, 14(7), 514; https://doi.org/10.3390/d14070514 - 25 Jun 2022
Cited by 5 | Viewed by 2198
Abstract
Neanthes japonica has high commercial value. The gut microbes in N. japonica can maintain the normal biological functions of the host. However, information on the gut bacterial community of N. japonica and its relationship with the surrounding environment is unclear. In this study, [...] Read more.
Neanthes japonica has high commercial value. The gut microbes in N. japonica can maintain the normal biological functions of the host. However, information on the gut bacterial community of N. japonica and its relationship with the surrounding environment is unclear. In this study, we used high-throughput sequencing technology to investigate the bacterial communities in the gut of N. japonica and soil. The results showed that the bacterial community diversity and structure differed obviously between the gut and soil samples. Bacterial richness and diversity in the gut samples decreased considerably compared to soil samples. In addition, dominant bacterial taxa varied significantly between the gut and soil samples. The dominant phyla in the gut and soil samples were Proteobacteria, Bacteroidota and Planctomycetota. The dominant genus in the gut was Burkholderia-Caballeronia-Paraburkholderia, while the dominant genera in the soil were Woeseia and Subgroup_23. In conclusion, the similarity between the bacterial communities in soil and the gut of N. japonica was small, indicating that soil had little effect on the establishment of the gut bacterial community. This study provides a better understanding of the gut bacterial community in N. japonica and the influence of the external environment on the colonization of the gut bacterial community. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

Back to TopTop