Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Wigner time-delay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4292 KiB  
Article
A High-Resolution Defect Location Method for Medium-Voltage Cables Based on Gaussian Narrow-Band Envelope Signals and the S-Transform
by Wei Chen, Zhenbao Yang, Jinyang Song, Lifu Zhou, Lingchen Xiang, Xing Wang, Changjin Hao and Xianhao Fan
Energies 2024, 17(9), 2218; https://doi.org/10.3390/en17092218 - 5 May 2024
Cited by 2 | Viewed by 1084
Abstract
The time–frequency-domain reflection method (TFDR) based on the Wigner–Ville distribution (WVD) is confronted with the problem of cross-term interference in existing methods to locate power cable defects. Therefore, a new method of locating cable defects based on Gaussian narrow-band envelope signals and the [...] Read more.
The time–frequency-domain reflection method (TFDR) based on the Wigner–Ville distribution (WVD) is confronted with the problem of cross-term interference in existing methods to locate power cable defects. Therefore, a new method of locating cable defects based on Gaussian narrow-band envelope signals and the S-transform is proposed in this paper. In this method, the wide-band cable transfer function is obtained by adjusting the parameters of the Gaussian narrow-band envelope signal because the Gaussian narrow-band envelope signal has a good frequency-adjusting ability and time–frequency characteristics. Then, the time–frequency of the cable signal is transformed by the generalized S-transform, and the time delay of the modular matrix of the transformation matrix is estimated by the generalized cross-correlation algorithm to complete the accurate detection of the cable defect’s location. Compared with traditional methods, the proposed method can adaptively adjust the analysis time width according to the frequency change and provide intuitive time–frequency characteristics without cross-term interference. Finally, the effectiveness and practicability of the proposed method are verified in MATLAB 2017_a by simulating a 40 m/10 kV medium-voltage power cable and submarine cable with a length of 32 km. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

16 pages, 1396 KiB  
Article
EWS Time Delay in Low Energy e−C60 Elastic Scattering
by Aiswarya R., Rasheed Shaik, Jobin Jose, Hari R. Varma and Himadri S. Chakraborty
Atoms 2024, 12(3), 18; https://doi.org/10.3390/atoms12030018 - 21 Mar 2024
Cited by 1 | Viewed by 2043
Abstract
Access to time delay in a projectile-target scattering is a fundamental tool in understanding their interactions by probing the temporal domain. The present study focuses on computing and analyzing the Eisenbud-Wigner-Smith (EWS) time delay in low energy elastic eC60 scattering. [...] Read more.
Access to time delay in a projectile-target scattering is a fundamental tool in understanding their interactions by probing the temporal domain. The present study focuses on computing and analyzing the Eisenbud-Wigner-Smith (EWS) time delay in low energy elastic eC60 scattering. The investigation is carried out in the framework of a non-relativistic partial wave analysis (PWA) technique. The projectile-target interaction is described in (i) Density Functional Theory (DFT) and (ii) Annular Square Well (ASW) static model, and their final results are compared in details. The impact of polarization on resonant and non-resonant time delay is also investigated. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

17 pages, 1843 KiB  
Article
Quantum Measurements and Delays in Scattering by Zero-Range Potentials
by Xabier Gutiérrez, Marisa Pons and Dmitri Sokolovski
Entropy 2024, 26(1), 75; https://doi.org/10.3390/e26010075 - 16 Jan 2024
Cited by 1 | Viewed by 1715
Abstract
Eisenbud–Wigner–Smith delay and the Larmor time give different estimates for the duration of a quantum scattering event. The difference is most pronounced in the case where the de Broglie wavelength is large compared to the size of the scatterer. We use the methods [...] Read more.
Eisenbud–Wigner–Smith delay and the Larmor time give different estimates for the duration of a quantum scattering event. The difference is most pronounced in the case where the de Broglie wavelength is large compared to the size of the scatterer. We use the methods of quantum measurement theory to analyse both approaches and to decide which one of them, if any, describes the duration a particle spends in the region that contains the scattering potential. The cases of transmission, reflection, and three-dimensional elastic scattering are discussed in some detail. Full article
(This article belongs to the Special Issue Quantum Mechanics and the Challenge of Time)
Show Figures

Figure 1

22 pages, 680 KiB  
Article
Nakagami-m Fading Channel Identification Using Adaptive Continuous Wavelet Transform and Convolutional Neural Networks
by Gianmarco Baldini and Fausto Bonavitacola
Algorithms 2023, 16(6), 277; https://doi.org/10.3390/a16060277 - 30 May 2023
Cited by 2 | Viewed by 2741
Abstract
Channel identification is a useful function to support wireless telecommunication operations because the knowledge of the radio frequency propagation channel characteristics can improve communication efficiency and robustness. In recent times, the application of machine learning (ML) algorithms to the problem of channel identification [...] Read more.
Channel identification is a useful function to support wireless telecommunication operations because the knowledge of the radio frequency propagation channel characteristics can improve communication efficiency and robustness. In recent times, the application of machine learning (ML) algorithms to the problem of channel identification has been proposed in the literature. In particular, Deep Learning (DL) has demonstrated superior performance to ’shallow’ machine learning algorithms for many wireless communication functions. Inspired by the success of DL in literature, the authors in this paper apply Convolutional Neural Networks (CNN) to the problem of channel identification, which is still an emerging research area. CNN is a deep learning algorithm that has demonstrated superior performance to ML algorithms, in particular for image processing tasks. Because the digitized RF signal is a one-dimensional time series, different algorithms are applied to convert the time series to images using various Time Frequency Transform (TFT) including the CWTs, spectrogram, and Wigner Ville distribution. The images are then provided as input to the CNN. The approach is applied to a data set based on weather radar pulse signals generated in the laboratory of the author’s facilities on which different fading models are applied. These models are inspired by the tap-delay-line 3GPP configurations defined in the standards, but they have been customized with Nakagami-m fading distribution (3GPP-like fading models). The results show the superior performance of time–frequency CNN in comparison to 1D CNN for different values of Signal to Noise Ratio (SNR) in dB. In particular, the study shows that the Continuous Wavelet Transform (CWT) has the optimal performance in this data set, but the choice of the mother wavelet remains a problem to be solved (this is a well-known problem in the research literature). Then, this study also proposes an adaptive technique for the choice of the optimal mother wavelet, which is evaluated on the mentioned data set. The results show that the adaptive proposed approach is able to obtain the optimal performance for most of the SNR conditions. Full article
(This article belongs to the Special Issue Algorithms for Communication Networks)
Show Figures

Figure 1

14 pages, 1562 KiB  
Article
Attosecond Time Delay Trends across the Isoelectronic Noble Gas Sequence
by Brock Grafstrom and Alexandra S. Landsman
Atoms 2023, 11(5), 84; https://doi.org/10.3390/atoms11050084 - 15 May 2023
Cited by 4 | Viewed by 2036
Abstract
The analysis and measurement of Wigner time delays can provide detailed information about the electronic environment within and around atomic and molecular systems, with one the key differences being the lack of a long-range potential after a halogen ion undergoes photoionization. In this [...] Read more.
The analysis and measurement of Wigner time delays can provide detailed information about the electronic environment within and around atomic and molecular systems, with one the key differences being the lack of a long-range potential after a halogen ion undergoes photoionization. In this work, we use relativistic random-phase approximation to calculate the average Wigner delay from the highest occupied subshells of the atomic pairings (2p, 2s in Fluorine, Neon), (3p, 3s in Chlorine, Argon), (4p, 4s, 3d, in Bromine, Krypton), and (5p, 5s, 4d in Iodine, Xenon). The qualitative behaviors of the Wigner delays between the isoelectronic pairings were found to be similar in nature, with the only large differences occurring at photoelectron energies less than 20 eV and around Cooper minima. Interestingly, the relative shift in Wigner time delays between negatively charged halogens and noble gases decreases as atomic mass increases. All atomic pairings show large differences at low energies, with noble gas atoms showing large positive Wigner delays, while negatively charged halogen ions show negative delays. The implications for photoionization studies in halide-containing molecules is also discussed. Full article
Show Figures

Figure 1

9 pages, 572 KiB  
Article
Time Delay in Electron Collision with a Spherical Target as a Function of the Scattering Angle
by Miron Ya. Amusia, Arkadiy S. Baltenkov and Igor Woiciechowski
Atoms 2021, 9(4), 105; https://doi.org/10.3390/atoms9040105 - 1 Dec 2021
Cited by 3 | Viewed by 2622
Abstract
We have studied the angular time delay in slow-electron elastic scattering by spherical targets as well as the average time delay of electrons in this process. It is demonstrated how the angular time delay is connected to the Eisenbud–Wigner–Smith (EWS) time delay. The [...] Read more.
We have studied the angular time delay in slow-electron elastic scattering by spherical targets as well as the average time delay of electrons in this process. It is demonstrated how the angular time delay is connected to the Eisenbud–Wigner–Smith (EWS) time delay. The specific features of both angular and energy dependencies of these time delays are discussed in detail. The potentialities of the derived general formulas are illustrated by the numerical calculations of the time delays of slow electrons in the potential fields of both absolutely hard-sphere and delta-shell potential well of the same radius. The conducted studies shed more light on the specific features of these time delays. Full article
Show Figures

Figure 1

9 pages, 1931 KiB  
Article
Wigner Time-Delay and Distribution for Polarization Interaction in Strongly Coupled Semiclassical Plasmas
by Myoung-Jae Lee and Young-Dae Jung
Entropy 2020, 22(9), 910; https://doi.org/10.3390/e22090910 - 19 Aug 2020
Viewed by 2105
Abstract
The quantum effect on the Wigner time-delay and distribution for the polarization scattering in a semiclassical dense plasma is explored. The partial wave analysis is applied for a partially ionized dense plasma to derive the phase shift for the polarization interaction. The Wigner [...] Read more.
The quantum effect on the Wigner time-delay and distribution for the polarization scattering in a semiclassical dense plasma is explored. The partial wave analysis is applied for a partially ionized dense plasma to derive the phase shift for the polarization interaction. The Wigner time-delay and the Wigner distribution are derived for the electron–atom polarization interaction including the effects of quantum-mechanical characteristic and plasma screening. In this work, we show that the Wigner time-delay and the Wigner distribution for the polarization interaction can be suppressed by the quantum effect. The Wigner time-delay and the Wigner distribution are also significantly suppressed by the increase of plasma shielding. The variation of the Wigner time-delay and the Wigner distribution function due to quantum screening is discussed. Full article
Show Figures

Graphical abstract

19 pages, 5754 KiB  
Article
Time-Varying SAR Interference Suppression Based on Delay-Doppler Iterative Decomposition Algorithm
by Jia Su, Haihong Tao, Mingliang Tao, Jian Xie, Yuexian Wang and Ling Wang
Remote Sens. 2018, 10(9), 1491; https://doi.org/10.3390/rs10091491 - 18 Sep 2018
Cited by 24 | Viewed by 3952
Abstract
Narrow-band interference (NBI) and Wide-band interference (WBI) are critical issues for synthetic aperture radar (SAR), which degrades the imaging quality severely. Since some complex signals can be modeled as linear frequency modulated (LFM) signals within a short time, LFM-WBI and NBI are mainly [...] Read more.
Narrow-band interference (NBI) and Wide-band interference (WBI) are critical issues for synthetic aperture radar (SAR), which degrades the imaging quality severely. Since some complex signals can be modeled as linear frequency modulated (LFM) signals within a short time, LFM-WBI and NBI are mainly discussed in this paper. Due to its excellent energy concentration and useful properties (i.e., auto-terms pass through the origin of Delay-Doppler plane while cross-terms are away from it), a novel nonparametric interference suppression method using Delay-Doppler iterative decomposition algorithm is proposed. This algorithm consists of three stages. First, we present signal synthesis method (SSM) from ambiguity function (AF) and cross ambiguity function (CAF) based on the matrix rearrangement and eigenvalue decomposition. Compared with traditional SSM from Wigner distribution (WD), the proposed SSM can synthesize a signal faster and more accurately. Then, based on unique properties in Delay-Doppler domain, a mask algorithm is applied for interference identification and extraction using Radon and its inverse transformation. Finally, a signal iterative decomposition algorithm (IDA) is utilized to subtract the largest interference from the received signal one by one. After that, a well-focused SAR imagery is obtained by conventional imaging methods. The simulation and measured data results demonstrate that the proposed algorithm not only suppresses interference efficiently but also preserves the useful information as much as possible. Full article
(This article belongs to the Special Issue Radio Frequency Interference (RFI) in Microwave Remote Sensing)
Show Figures

Graphical abstract

13 pages, 396 KiB  
Article
Attosecond Time Delay in Photoionization of Noble-Gas and Halogen Atoms
by Liang-Wen Pi and Alexandra S. Landsman
Appl. Sci. 2018, 8(3), 322; https://doi.org/10.3390/app8030322 - 26 Feb 2018
Cited by 14 | Viewed by 5018
Abstract
Ultrafast processes are now accessible on the attosecond time scale due to the availability of ultrashort XUV laser pulses. Noble-gas and halogen atoms remain important targets due to their giant dipole resonance and Cooper minimum. Here, we calculate photoionization cross section, asymmetry parameter [...] Read more.
Ultrafast processes are now accessible on the attosecond time scale due to the availability of ultrashort XUV laser pulses. Noble-gas and halogen atoms remain important targets due to their giant dipole resonance and Cooper minimum. Here, we calculate photoionization cross section, asymmetry parameter and Wigner time delay using the time-dependent local-density approximation (TDLDA), which includes the electron correlation effects. Our results are consistent with experimental data and other theoretical calculations. The asymmetry parameter provides an extra layer of access to the phase information of the photoionization processes. We find that halogen atoms bear a strong resemblance on cross section, asymmetry parameter and time delay to their noble-gas neighbors. Our predicted time delay should provide a guidance for future experiments on those atoms and related molecules. Full article
(This article belongs to the Special Issue Extreme Time Scale Photonics)
Show Figures

Figure 1

Back to TopTop