Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Wien distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1017 KiB  
Communication
Observing the Ionization of Metastable States of Sn14+ in an Electron Beam Ion Trap
by Qi Guo, Zhaoying Chen, Fangshi Jia, Wenhao Xia, Xiaobin Ding, Jun Xiao, Yaming Zou and Ke Yao
Atoms 2025, 13(8), 71; https://doi.org/10.3390/atoms13080071 - 1 Aug 2025
Viewed by 124
Abstract
This study investigates the ionization balance of Sn ions in an electron beam ion trap (EBIT). Highly charged Sn ions are produced via collisions with a quasi-monochromatic electron beam, and the charge state distribution is analyzed using a Wien filter. Significant Sn15+ [...] Read more.
This study investigates the ionization balance of Sn ions in an electron beam ion trap (EBIT). Highly charged Sn ions are produced via collisions with a quasi-monochromatic electron beam, and the charge state distribution is analyzed using a Wien filter. Significant Sn15+ production occurs at electron energies below the ionization potential of Sn14+ (379 eV). Calculations attribute this to electron-impact ionization from metastable Sn14+ states. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

14 pages, 322 KiB  
Article
Ultrarelativistic Gas with Zero Chemical Potential
by Daniel Mata-Pacheco, Gonzalo Ares de Parga and Fernando Angulo-Brown
Symmetry 2019, 11(2), 249; https://doi.org/10.3390/sym11020249 - 16 Feb 2019
Viewed by 6290
Abstract
In this work, we propose a set of conditions such that an ultrarelativistic classical gas can present a photon-like behavior. This is achieved by assigning a zero chemical potential to the ultrarelativistic ideal gas. The resulting behavior is similar to that of a [...] Read more.
In this work, we propose a set of conditions such that an ultrarelativistic classical gas can present a photon-like behavior. This is achieved by assigning a zero chemical potential to the ultrarelativistic ideal gas. The resulting behavior is similar to that of a Wien photon gas. It is found to be possible only for gases made of very lightweight particles such as neutrinos, as long as we treat them as classical particles, and it depends on the spin degeneracy factor. This procedure allows establishing an analogy between an evaporating gas and the cavity radiation. Full article
Show Figures

Figure 1

Back to TopTop