Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Waterworks sludge ceramsite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1455 KiB  
Article
Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon
by Xiaoying Zheng, Mengqi Jin, Hang Xu, Wei Chen, Yuan Zhang, Mengmeng Yang, Xiaoyao Shao, Zhi Xu and Weihong Wang
Int. J. Environ. Res. Public Health 2019, 16(15), 2646; https://doi.org/10.3390/ijerph16152646 - 24 Jul 2019
Cited by 23 | Viewed by 3950
Abstract
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and [...] Read more.
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and nitrogen removal, as well as phosphorus removal and the adsorbed forms of phosphorus were measured and the removal mechanism of these pollutants by the ICWSC-DNBF system for treating SE-WTP were investigated. The results showed that the ICWSC-DNBF achieved good removals of COD, NH4+-N, NO3-N, total N and total P; effluent concentrations were 17.23 mg/L, 3.72 mg/L, 14.32 mg/L, 17.38 mg/L and 0.82 mg/L, respectively. WSC enhanced the P removal due to its high specific surface area and the high number of adsorption sites. Fe-P and Al-P were the main forms of P adsorbed by WSC, accounting for 78.53% of the total adsorbed P. WSC coupled with Fe and C improved the biodegradability of SE-WTP and promoted the removal of organic matter. The removal of N was attributed to the abundant denitrifying microorganisms in the system and the electrochemical effect produced by the internal electrolysis of Fe and C. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

13 pages, 2745 KiB  
Article
Preparation of Ceramsite Based on Waterworks Sludge and Its Application as Matrix in Constructed Wetlands
by Yaning Wang, Jinhu Yang, Hang Xu, Chenwei Liu, Zhen Shen and Kai Hu
Int. J. Environ. Res. Public Health 2019, 16(15), 2637; https://doi.org/10.3390/ijerph16152637 - 24 Jul 2019
Cited by 36 | Viewed by 4477
Abstract
The recycling of waterworks sludge has become a trending issue because it not only solves the problem of difficult disposal but also saves land resources. This paper aimed to provide a new idea for the utilization of waterworks sludge to form ceramsite and [...] Read more.
The recycling of waterworks sludge has become a trending issue because it not only solves the problem of difficult disposal but also saves land resources. This paper aimed to provide a new idea for the utilization of waterworks sludge to form ceramsite and to purify sewage. The specific surface area, average pore size, and pore volume of the made ceramsite were 8.15 m2/g, 8.53 nm, and 1.88 cm2/g, respectively. The made ceramsite was applied in a vertical-flow constructed wetland, and the removal efficiency of nitrogen, phosphorus and organic matter in sewage were investigated under the conditions of different start-up periods, hydraulic retention times, matrix filling heights and water quality. The removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) in the constructed wetlands were stable at 70%, 60%, and 79%, respectively. This constructed wetland with a ceramic matrix has certain advantages in the total amount of denitrifying microorganisms, with a proportion of 14.92%. The results prove the feasibility of preparing ceramsite from waterworks sludge and applying it as a matrix in a constructed wetland to purify sewage. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

Back to TopTop