Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Volga and Severnaya Dvina basins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3793 KiB  
Article
Manifestation of the Early 20th Century Warming in the East-European Plain: Atmospheric Circulation Anomalies and Its Connection to the North Atlantic SST and Sea Ice Variability
by Valeria Popova, Tatiana Aldonina and Daria Bokuchava
Atmosphere 2023, 14(3), 428; https://doi.org/10.3390/atmos14030428 - 21 Feb 2023
Cited by 1 | Viewed by 1676
Abstract
A study of the climatic characteristics and annual runoff of the Volga and Severnaya Dvina rivers demonstrates that, on the East European Plain (EEP), Early Twentieth Century Warming (ETCW) manifested in a multiyear drought between 1934 and 1940; this drought has no analogues [...] Read more.
A study of the climatic characteristics and annual runoff of the Volga and Severnaya Dvina rivers demonstrates that, on the East European Plain (EEP), Early Twentieth Century Warming (ETCW) manifested in a multiyear drought between 1934 and 1940; this drought has no analogues in this region in terms of intensity and duration according to Palmer’s classification, and caused extreme hydrological events. The circulation conditions during this event were characterized by an extensive anticyclone over Eastern Europe, combined with a cyclonic anomaly in the circumpolar region. An analysis of the spatial features of sea surface temperature (SST) anomalies indicate that the surface air temperature (SAT) anomalies in July on the EEP during ETCW were related not only to the North Atlantic (NA) warming and positive AMO phase, but also to a certain spatial pattern of SST anomalies characteristic of the 1920–1950 period. The difference between the SST anomalies of the opposite sign in the different NA zones, used as the indicator of the obtained spatial pattern, shows the quite close relations between the July SAT anomalies on the EEP and the atmospheric circulation patterns responsible for them. The positive phase of the Atlantic Multidecadal Oscillation (AMO) and the expansion of the subtropical high-pressure belt to the north and to the east can be considered as global-scale drivers of this phenomenon. The AMO also impacts the sea ice cover in the Barents–Kara Sea region, which, in turn, could have led to specific atmospheric circulation patterns and contributed to droughts on the EEP in the 1930s. Full article
(This article belongs to the Special Issue Advances in Atmospheric Sciences ‖)
Show Figures

Figure 1

7 pages, 3264 KiB  
Proceeding Paper
The Early 20th Century Warming in the East-European Plain Climate: Extreme Drought in 1920–1940, Atmospheric Circulation Anomalies and Links with the Sea Ice Variability
by Valeria Popova, Tatiana Matveeva and Daria Bokuchava
Environ. Sci. Proc. 2022, 19(1), 57; https://doi.org/10.3390/ecas2022-12864 - 1 Aug 2022
Cited by 1 | Viewed by 1229
Abstract
Analysis of climatic characteristics, Palmer Drought Severity Index, and large-scale river runoff based on observational data (CRUTEM.5, GISSTEMP v4, CRU TS4.05, CRU-scPDSI) and 20th century reanalysis (ERA20C, CERA20C) shows that the early 20th century warming period, in particular the 1930s, on the East-European [...] Read more.
Analysis of climatic characteristics, Palmer Drought Severity Index, and large-scale river runoff based on observational data (CRUTEM.5, GISSTEMP v4, CRU TS4.05, CRU-scPDSI) and 20th century reanalysis (ERA20C, CERA20C) shows that the early 20th century warming period, in particular the 1930s, on the East-European Plain was marked by the strong long-lasting drought that has no analogues during the observation period. The atmospheric circulation patterns and drivers of this phenomena, as well as the associated reduction in the sea ice extent of the Kara Sea, are studied. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

Back to TopTop