Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Vipp1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2719 KiB  
Review
Virtual Screening of Protein Data Bank via Docking Simulation Identified the Role of Integrins in Growth Factor Signaling, the Allosteric Activation of Integrins, and P-Selectin as a New Integrin Ligand
by Yoshikazu Takada, Masaaki Fujita and Yoko K. Takada
Cells 2023, 12(18), 2265; https://doi.org/10.3390/cells12182265 - 13 Sep 2023
Cited by 7 | Viewed by 2703
Abstract
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor–integrin crosstalk). We performed a [...] Read more.
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor–integrin crosstalk). We performed a virtual screening of protein data bank (PDB) using docking simulations with the integrin headpiece as a target. We showed that several growth factors (e.g., FGF1 and IGF1) induce a integrin-growth factor-cognate receptor ternary complex on the surface. Growth factor/cytokine mutants defective in integrin binding were defective in signaling functions and act as antagonists of growth factor signaling. Unexpectedly, several growth factor/cytokines activated integrins by binding to the allosteric site (site 2) in the integrin headpiece, which is distinct from the classical ligand (RGD)-binding site (site 1). Since 25-hydroxycholesterol, a major inflammatory mediator, binds to site 2, activates integrins, and induces inflammatory signaling (e.g., IL-6 and TNFα secretion), it has been proposed that site 2 is involved in inflammatory signaling. We showed that several inflammatory factors (CX3CL1, CXCL12, CCL5, sPLA2-IIA, and P-selectin) bind to site 2 and activate integrins. We propose that site 2 is involved in the pro-inflammatory action of these proteins and a potential therapeutic target. It has been well-established that platelet integrin αIIbβ3 is activated by signals from the inside of platelets induced by platelet agonists (inside-out signaling). In addition to the canonical inside-out signaling, we showed that αIIbβ3 can be allosterically activated by inflammatory cytokines/chemokines that are stored in platelet granules (e.g., CCL5, CXCL12) in the absence of inside-out signaling (e.g., soluble integrins in cell-free conditions). Thus, the allosteric activation may be involved in αIIbβ3 activation, platelet aggregation, and thrombosis. Inhibitory chemokine PF4 (CXCL4) binds to site 2 but did not activate integrins, Unexpectedly, we found that PF4/anti-PF4 complex was able to activate integrins, indicating that the anti-PF4 antibody changed the phenotype of PF4 from inhibitory to inflammatory. Since autoantibodies to PF4 are detected in vaccine-induced thrombocytopenic thrombosis (VIPP) and autoimmune diseases (e.g., SLE, and rheumatoid arthritis), we propose that this phenomenon is related to the pathogenesis of these diseases. P-selectin is known to bind exclusively to glycans (e.g., sLex) and involved in cell–cell interaction by binding to PSGL-1 (CD62P glycoprotein ligand-1). Unexpectedly, through docking simulation, we discovered that the P-selectin C-type lectin domain functions as an integrin ligand. It is interesting that no one has studied whether P-selectin binds to integrins in the last few decades. The integrin-binding site and glycan-binding site were close but distinct. Also, P-selectin lectin domain bound to site 2 and allosterically activated integrins. Full article
(This article belongs to the Special Issue The Role of Integrins in Health and Disease)
Show Figures

Figure 1

16 pages, 1034 KiB  
Article
Conduct Problems and Hair Cortisol Concentrations Decrease in School-Aged Children after VIPP-SD: A Randomized Controlled Trial in Two Twin Cohorts
by Jana Runze, Irene Pappa, Marinus H. Van IJzendoorn and Marian J. Bakermans-Kranenburg
Int. J. Environ. Res. Public Health 2022, 19(22), 15026; https://doi.org/10.3390/ijerph192215026 - 15 Nov 2022
Cited by 7 | Viewed by 3013
Abstract
The Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) is effective in increasing parental sensitivity and sensitive discipline, and aims to decrease child behavior problems. Changes in quality of parenting may be accompanied by effects on child stress levels. However, studies [...] Read more.
The Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) is effective in increasing parental sensitivity and sensitive discipline, and aims to decrease child behavior problems. Changes in quality of parenting may be accompanied by effects on child stress levels. However, studies of VIPP-SD effects on child behavior problems have shown mixed results and there are no studies to date of the effect of the intervention on children’s stress levels, as measured by hair cortisol concentration (HCC). Furthermore, differences in intervention effectiveness may be explained by differential susceptibility factors. We hypothesized that the effects of the VIPP-SD on child behavior problems might be moderated by currently available child polygenic scores of differential susceptibility (PGS-DS). In the current pre-registered trial, we randomly assigned 40% of n = 445 families with school-aged twin children to the intervention group. The VIPP-SD was successful in decreasing both children’s conduct problems and HCC. Effects were not moderated by available child PGS-DS. We conclude that a brief, home-based video-feedback parenting intervention can decrease child behavior problems and affect the child’s stress-related neuroendocrine system as assessed with hair cortisol. In future studies, more specific PGS-DS for externalizing behaviors should be used as well as parental PGS-DS. Full article
(This article belongs to the Special Issue Behavioural and Emotional Problems in Childhood)
Show Figures

Figure 1

15 pages, 824 KiB  
Review
Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport
by Marine Messant, Anja Krieger-Liszkay and Ginga Shimakawa
Cells 2021, 10(5), 1216; https://doi.org/10.3390/cells10051216 - 16 May 2021
Cited by 22 | Viewed by 4844
Abstract
Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to [...] Read more.
Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment. Full article
Show Figures

Figure 1

17 pages, 1937 KiB  
Article
Proton Leakage Is Sensed by IM30 and Activates IM30-Triggered Membrane Fusion
by Carmen Siebenaller, Benedikt Junglas, Annika Lehmann, Nadja Hellmann and Dirk Schneider
Int. J. Mol. Sci. 2020, 21(12), 4530; https://doi.org/10.3390/ijms21124530 - 25 Jun 2020
Cited by 8 | Viewed by 3800
Abstract
The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) [...] Read more.
The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) a dual function, and the protein is involved in stabilization of the thylakoid membrane as well as in Mg2+-dependent membrane fusion. IM30 binds to negatively charged membrane lipids, preferentially at stressed membrane regions where protons potentially leak out from the thylakoid lumen into the chloroplast stroma or the cyanobacterial cytoplasm, respectively. Here we show in vitro that IM30 membrane binding, as well as membrane fusion, is strongly increased in acidic environments. This enhanced activity involves a rearrangement of the protein structure. We suggest that this acid-induced transition is part of a mechanism that allows IM30 to (i) sense sites of proton leakage at the thylakoid membrane, to (ii) preferentially bind there, and to (iii) seal leaky membrane regions via membrane fusion processes. Full article
(This article belongs to the Special Issue Membrane Fusion 2.0)
Show Figures

Graphical abstract

Back to TopTop