Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = VSV-GP viral vaccine vector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3846 KiB  
Article
Early to Late VSV-G Expression in AcMNPV BV Enhances Transduction in Mammalian Cells but Does Not Affect Virion Yield in Insect Cells
by Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, María del Rosario Bauzá, María del Pilar Plastine, Victoria Alfonso, Fernanda Daniela Olea, Carolina Susana Cerrudo and Mariano Nicolás Belaich
Vaccines 2025, 13(7), 693; https://doi.org/10.3390/vaccines13070693 - 26 Jun 2025
Viewed by 428
Abstract
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. [...] Read more.
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. This study investigates how VSV-G expression timing affects pseudotype incorporation into budded virions (BVs) and subsequent transduction efficacy. Methods: Three recombinant AcMNPV constructs were generated, each expressing VSV-G under distinct baculoviral promoters (ie1, gp64, and p10) and GFP via a CMV promoter. VSV-G incorporation was verified by Western blot, while transduction efficiency was quantified in mammalian cell lines (fluorescence microscopy/flow cytometry) and rat hind limbs. Viral productivity was assessed through production kinetics and plaque assays. Results: All the pseudotyped viruses showed significantly enhanced transduction capacity versus controls, strongly correlating with VSV-G incorporation levels. The p10 promoter drove the highest VSV-G expression and transduction efficiency. Crucially, BV production yields and infectivity remained unaffected by VSV-G expression timing. The in vivo results mirrored the cell culture findings, with p10-driven constructs showing greater GFP expression at low doses (104 virions). Conclusions: Strategic VSV-G expression via very late promoters (particularly p10) maximizes baculoviral transduction without compromising production yields. This study establishes a framework for optimizing pseudotyped BV systems, demonstrating that late-phase glycoprotein expression balances high mammalian transduction with preserved insect-cell productivity—a critical advancement for vaccine vector development. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Graphical abstract

21 pages, 6764 KiB  
Article
Heterologous Prime-Boost Vaccination with a Peptide-Based Vaccine and Viral Vector Reshapes Dendritic Cell, CD4+ and CD8+ T Cell Phenotypes to Improve the Antitumor Therapeutic Effect
by Tamara Hofer, Matteo Rossi, Susanna Carboni, Wilma Di Berardino Besson, Dorothee von Laer, Guido Wollmann, Madiha Derouazi and Marie-Laure Santiago-Raber
Cancers 2021, 13(23), 6107; https://doi.org/10.3390/cancers13236107 - 3 Dec 2021
Cited by 6 | Viewed by 5190
Abstract
Heterologous prime-boost settings with a protein vaccine and the viral vector vesicular stomatitis virus, both expressing tumor-associated antigens (KISIMA-TAA and VSV-GP-TAA), have been previously shown to generate potent antitumor immunity. In the cold TC-1 model (HPV antigen) and the immune-infiltrate MC-38 model (Adpgk, [...] Read more.
Heterologous prime-boost settings with a protein vaccine and the viral vector vesicular stomatitis virus, both expressing tumor-associated antigens (KISIMA-TAA and VSV-GP-TAA), have been previously shown to generate potent antitumor immunity. In the cold TC-1 model (HPV antigen) and the immune-infiltrate MC-38 model (Adpgk, Reps1 and Rpl18 neo-antigens), we further investigated pivotal immune cells that educate CD8+ T cells. Heterologous prime-boost vaccination induced a superior antitumor response characterized by the increase in number and functionality of antigen-specific CD8+ T cells, recruitment of cross-presenting dendritic cells, and polarization of CD4+ T cells towards an antitumor Th1 phenotype within the tumor and tumor-draining lymph nodes, turning the cold TC-1 tumor into a hot, inflamed tumor. In the inflamed MC-38 tumor model, treatment combination markedly prolonged the overall survival of mice. Treatment with multi-epitope vaccines also induced high frequencies of multiple antigen specificities in the periphery and in the tumor. Prime-boost treatment reduced tumor-infiltrating regulatory CD4+ T cells whilst increasing cross-presenting dendritic cells in tumor-draining lymph nodes. In conclusion, heterologous prime-boost vaccination possesses the ability to induce a potent anti-tumor response in both immune-excluded and immune-infiltrated mouse tumor models. Additionally, this study highlights the design of a multi-epitope vaccine for cancer immunotherapy. Full article
(This article belongs to the Collection Mechanism of Immunotherapy in Cancers)
Show Figures

Graphical abstract

24 pages, 1476 KiB  
Review
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity
by Amanda N. Pinski and Ilhem Messaoudi
Microorganisms 2020, 8(10), 1473; https://doi.org/10.3390/microorganisms8101473 - 25 Sep 2020
Cited by 14 | Viewed by 4831
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first [...] Read more.
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity. Full article
(This article belongs to the Special Issue Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures)
Show Figures

Figure 1

17 pages, 2314 KiB  
Article
RSV Vaccine Based on Rhabdoviral Vector Protects after Single Immunization
by Sarah Wilmschen, Sabrina Schneider, Felix Peters, Lea Bayer, Leila Issmail, Zoltán Bánki, Thomas Grunwald, Dorothee von Laer and Janine Kimpel
Vaccines 2019, 7(3), 59; https://doi.org/10.3390/vaccines7030059 - 3 Jul 2019
Cited by 14 | Viewed by 5311
Abstract
The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the [...] Read more.
The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the VSV glycoprotein G is exchanged by the glycoprotein GP of the lymphocytic choriomeningitis virus. Here, we evaluated VSV-GP as vaccine vector for RSV with the aim to induce RSV neutralizing antibodies. Wild-type F (Fwt) or a codon optimized version (Fsyn) were introduced at position 5 into the VSV-GP genome. Both F versions were efficiently expressed in VSV-GP-F infected cells and incorporated into VSV-GP particles. In mice, high titers of RSV neutralizing antibodies were induced already after prime and subsequently boosted by a second immunization. After challenge with RSV, viral loads in the lungs of immunized mice were reduced by 2–3 logs with no signs of an enhanced disease induced by the vaccination. Even a single intranasal immunization significantly reduced viral load by a factor of more than 100-fold. RSV neutralizing antibodies were long lasting and mice were still protected when challenged 20 weeks after the boost. Therefore, VSV-GP is a promising candidate for an effective RSV vaccine. Full article
(This article belongs to the Special Issue Vaccines for Respiratory Syncytial Virus)
Show Figures

Figure 1

20 pages, 2519 KiB  
Article
Induction of Tier 1 HIV Neutralizing Antibodies by Envelope Trimers Incorporated into a Replication Competent Vesicular Stomatitis Virus Vector
by C. Anika Bresk, Tamara Hofer, Sarah Wilmschen, Marina Krismer, Anja Beierfuß, Grégory Effantin, Winfried Weissenhorn, Michael J. Hogan, Andrea P. O. Jordan, Rebecca S. Gelman, David C. Montefiori, Hua-Xin Liao, Joern E. Schmitz, Barton F. Haynes, Dorothee von Laer and Janine Kimpel
Viruses 2019, 11(2), 159; https://doi.org/10.3390/v11020159 - 15 Feb 2019
Cited by 15 | Viewed by 6697
Abstract
A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced [...] Read more.
A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced genes for different variants of the HIV-1 envelope protein Env, i.e., secreted or membrane-anchored, intact or mutated furin cleavage site or different C-termini, into the genome of VSV-GP. We found that the addition of the Env antigen did not attenuate VSV-GP replication. All HIV-1 Env variants were expressed in VSV-GP infected cells and some were incorporated very efficiently into VSV-GP particles. Crucial epitopes for binding of broadly neutralizing antibodies against HIV-1 such as MPER (membrane-proximal external region), CD4 binding site, V1V2 and V3 loop were present on the surface of VSV-GP-Env particles. Binding of quaternary antibodies indicated a trimeric structure of VSV-GP incorporated Env. We detected high HIV-1 antibody titers in mice and showed that vectors expressing membrane-anchored Env elicited higher antibody titers than vectors that secreted Envs. In rabbits, Tier 1A HIV-1 neutralizing antibodies were detectable after prime immunization and titers further increased after boosting with a second immunization. Taken together, VSV-GP-Env is a promising vector vaccine against HIV-1 infection since this vector permits incorporation of native monomeric and/or trimeric HIV-1 Env into a viral membrane. Full article
(This article belongs to the Special Issue HIV Vaccines)
Show Figures

Figure 1

Back to TopTop