Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = VLPs to bacteria ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1187 KiB  
Brief Report
Effect of the Presence of Virus-like Particles on Bacterial Growth in Sunlit Surface and Dark Deep Ocean Environments in the Southern East China Sea
by An-Yi Tsai, Ying-Tsong Lin and Gwo-Ching Gong
Water 2021, 13(20), 2934; https://doi.org/10.3390/w13202934 - 19 Oct 2021
Cited by 5 | Viewed by 2459
Abstract
Virus-like particles (VLPs) are thought to increase the dissolved organic carbon by releasing the contents of the host cell, which, in turn, can affect bacterial growth in natural aquatic environments. Yet, experimental tests have shown that the effect of VLPs on the bacterial [...] Read more.
Virus-like particles (VLPs) are thought to increase the dissolved organic carbon by releasing the contents of the host cell, which, in turn, can affect bacterial growth in natural aquatic environments. Yet, experimental tests have shown that the effect of VLPs on the bacterial growth rate at different depths has seldom been studied. Bacteria–VLP interaction and the effect of VLPs on bacterial growth rate in the sunlit surface (3 m) and dark, deep ocean (130 m) environments were first explored at a test site in the southern East China Sea of the northwest Pacific. Our experimental results indicated that bacterial and virus-like particle (VLP) abundance decreased with depth from 0.8 ± 0.3 × 105 cells mL−1 and 1.8 ± 0.4 × 106 VLPs mL−1 at 3 m to 0.4 ± 0.1 × 105 cells mL−1 and 1.4 ± 0.3 × 106 VLPs mL−1 at 130 m. We found that the abundance of VLPs to Bacteria Ratio (VBR) in the dark deep ocean (VBR = 35.0 ± 5.6) was higher than in the sunlit surface environment (VBR = 22.5 ± 2.1). The most interesting finding is that in the dark, deep ocean region the bacterial growth rate in the presence of VLPs was higher (0.05 h−1) than that in virus-diluted treatments (0.01 h−1). However, there was no significant difference in the bacterial growth rates between the treatments in the sunlit surface ocean region. Deep-sea ecosystems are dark and extreme environments that lack primary photosynthetic production, and our estimates imply that the contribution of recycled carbon by viral lysis is highly significant for bacterial growth in the dark, deep ocean environment. Further work for more study sites is needed to identify the relationship of VLPs and their hosts to enable us to understand the role of VLPs at different depths in the East China Sea. Full article
(This article belongs to the Special Issue Microbial Communities in Water Environments: Dynamics and Interaction)
Show Figures

Figure 1

15 pages, 3853 KiB  
Article
Viral Abundance and Diversity of Production Fluids in Oil Reservoirs
by Liangcan Zheng, Xiaolong Liang, Rongjiu Shi, Ping Li, Jinyi Zhao, Guoqiao Li, Shuang Wang, Siqin Han, Mark Radosevich and Ying Zhang
Microorganisms 2020, 8(9), 1429; https://doi.org/10.3390/microorganisms8091429 - 17 Sep 2020
Cited by 6 | Viewed by 4630
Abstract
Viruses are widely distributed in various ecosystems and have important impacts on microbial evolution, community structure and function and nutrient cycling in the environment. Viral abundance, diversity and distribution are important for a better understanding of ecosystem functioning and have often been investigated [...] Read more.
Viruses are widely distributed in various ecosystems and have important impacts on microbial evolution, community structure and function and nutrient cycling in the environment. Viral abundance, diversity and distribution are important for a better understanding of ecosystem functioning and have often been investigated in marine, soil, and other environments. Though microbes have proven useful in oil recovery under extreme conditions, little is known about virus community dynamics in such systems. In this study, injection water and production fluids were sampled in two blocks of the Daqing oilfield limited company where water flooding and microbial flooding were continuously used to improve oil recovery. Virus-like particles (VLPs) and bacteria in these samples were extracted and enumerated with epifluorescence microscopy, and viromes of these samples were also sequenced with Illumina Hiseq PE150. The results showed that a large number of viruses existed in the oil reservoir, and VLPs abundance of production wells was 3.9 ± 0.7 × 108 mL−1 and virus to bacteria ratio (VBR) was 6.6 ± 1.1 during water flooding. Compared with water flooding, the production wells of microbial flooding had relative lower VLPs abundance (3.3 ± 0.3 × 108 mL−1) but higher VBR (7.9 ± 2.2). Assembled viral contigs were mapped to an in-house virus reference data separate from the GenBank non-redundant nucleotide (NT) database, and the sequences annotated as virus accounted for 35.34 and 55.04% of total sequences in samples of water flooding and microbial flooding, respectively. In water flooding, 7 and 6 viral families were identified in the injection and production wells, respectively. In microbial flooding, 6 viral families were identified in the injection and production wells. The total number of identified viral species in the injection well was higher than that in the production wells for both water flooding and microbial flooding. The Shannon diversity index was higher in the production well of water flooding than in the production well of microbial flooding. These results show that viruses are very abundant and diverse in the oil reservoir’s ecosystem, and future efforts are needed to reveal the potential function of viral communities in this extreme environment. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop