Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Uraria crinita

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3322 KiB  
Article
Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey
by Chang An, Denglin Li, Lin Lu, Chaojia Liu, Xiaowen Xu, Shiyu Xie, Jing Wang, Ruoyu Liu, Chengzi Yang, Yuan Qin and Ping Zheng
Plants 2024, 13(24), 3536; https://doi.org/10.3390/plants13243536 - 18 Dec 2024
Viewed by 1561
Abstract
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a [...] Read more.
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including Sarcandra glabra (Chloranthaceae), Nekemias grossedentata (Vitaceae), Uraria crinita (Fabaceae), Gynostemma pentaphyllum (Cucurbitaceae), Reynoutria japonica (Polygonaceae), Pseudostellaria heterophylla (Caryophyllaceae), Morinda officinalis (Rubiaceae), Vitex rotundifolia (Lamiaceae), and Gynura formosana (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.66 Gb, 0.65 Gb, 0.58 Gb, 1.02 Gb, 3.96 Gb, 2.99 Gb, 0.43 Gb, 0.78 Gb, and 7.27 Gb, respectively. The genome sizes of M. officinalis, R. japonica, and G. pentaphyllum have been previously reported. Comparative analyses suggest that variations in genome size may arise due to differences in measurement methods and sample sources. Therefore, employing multiple approaches to assess genome size is necessary to provide more reliable information for further genomic research. Based on the genome survey, species with considerable genome size variation or polyploidy, such as G. pentaphyllum, should undergo a ploidy analysis in conjunction with population genomics studies to elucidate the development of the diversified genome size. Additionally, a genome survey of U. crinita, a medicinal plant with a relatively small genome size (509.08 Mb) and of considerable interest in southern China, revealed a low heterozygosity rate (0.382%) and moderate repeat content (51.24%). Given the limited research costs, this species represents a suitable candidate for further genomic studies on Leguminous medicinal plants characteristic of southern China. This foundational genomic information will serve as a critical reference for the sustainable development and utilization of these medicinal plants. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 2384 KiB  
Article
Bioactivity-Guided Fractionation and NMR-Based Identification of the Immunomodulatory Isoflavone from the Roots of Uraria crinita (L.) Desv. ex DC
by Ping-Chen Tu, Chih-Ju Chan, Yi-Chen Liu, Yueh-Hsiung Kuo, Ming-Kuem Lin and Meng-Shiou Lee
Foods 2019, 8(11), 543; https://doi.org/10.3390/foods8110543 - 3 Nov 2019
Cited by 9 | Viewed by 3973
Abstract
Uraria crinita is used as a functional food ingredient. Little is known about the association between its immunomodulatory activity and its metabolites. We applied a precise strategy for screening metabolites using immunomodulatory fractions from a U. crinata root methanolic extract (UCME) in combination [...] Read more.
Uraria crinita is used as a functional food ingredient. Little is known about the association between its immunomodulatory activity and its metabolites. We applied a precise strategy for screening metabolites using immunomodulatory fractions from a U. crinata root methanolic extract (UCME) in combination with bioactivity-guided fractionation and NMR-based identification. The fractions from UCME were evaluated in terms of their inhibitory activity against the production of pro-inflammatory cytokines (IL-6 and TNF-α) by lipopolysaccharide (LPS)-stimulated mouse bone marrow-derived dendritic cells (BMDC). The role of the isoflavone genistein was indicated by the 1H NMR profiling of immunomodulatory subfractions (D-4 and D-5) and supported by the result that genistein-knockout subfractions (D-4 w/o and D-5 w/o) had a lower inhibitory activity compared to genistein-containing subfractions. This study suggests that genistein contributes to the immunomodulatory activity of UCME and will help in the standardization of functional food. Full article
Show Figures

Graphical abstract

Back to TopTop