Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = UF Falcon concentrator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3519 KB  
Article
Ultra-Fine Centrifugal Concentration of Bastnaesite Ore
by Alex Norgren and Corby Anderson
Metals 2021, 11(10), 1501; https://doi.org/10.3390/met11101501 - 23 Sep 2021
Cited by 6 | Viewed by 2937
Abstract
Historically, the ability to effectively separate carbonate gangue from bastnaesite via flotation has frequently proven to be challenging without sacrificing significant rare earth oxide (REO) grade or recovery. However, in light of the fact that the rare earth bearing minerals often exhibit higher [...] Read more.
Historically, the ability to effectively separate carbonate gangue from bastnaesite via flotation has frequently proven to be challenging without sacrificing significant rare earth oxide (REO) grade or recovery. However, in light of the fact that the rare earth bearing minerals often exhibit higher specific gravities than the carbonate gangue, the possibility exists that the use of gravity separation could be used to achieve such a selective separation. This however is complicated by the fact that, in cases such as this study when the liberation size is finer than 50 µm, most traditional gravity separation methods become increasingly challenging. The purposes of this study is to determine the applicability of gravity concentrators to beneficiate bastnaesite from deleterious calcite bearing flotation feed material. Via the use of a UF Falcon, it was possible to achieve rougher gravity REO recoveries approaching the upper 80% range while rejecting on the order of 30% of the total calcium. In terms of purely REO recovery, this represents a significant improvement over results obtained via a traditional Falcon in previously reported studies. Full article
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy—2nd Edition)
Show Figures

Figure 1

15 pages, 3910 KB  
Article
Recovery of Rare Earth Oxides from Flotation Concentrates of Bastnaesite Ore by Ultra-Fine Centrifugal Concentration
by Alex Norgren and Corby Anderson
Metals 2021, 11(9), 1498; https://doi.org/10.3390/met11091498 - 21 Sep 2021
Cited by 5 | Viewed by 2988
Abstract
Historically, the ability to effectively separate carbonate gangue from bastnaesite via flotation has frequently proven to be challenging without sacrificing significant rare earth oxide (REO) grade or recovery. However, in light of the fact that the rare earth bearing minerals often exhibit higher [...] Read more.
Historically, the ability to effectively separate carbonate gangue from bastnaesite via flotation has frequently proven to be challenging without sacrificing significant rare earth oxide (REO) grade or recovery. However, in light of the fact that the rare earth bearing minerals often exhibit higher specific gravities than the carbonate gangue, the possibility exists that the use of gravity separation could be used to achieve such a selective separation. This however is complicated by the fact that, in cases such as this study when the liberation size is finer than 50 microns, most traditional gravity separation methods become increasingly challenging. The aim of this study is to determine the applicability of centrifugal concentrators to beneficiate ultra-fine (UF) bastnaesite and calcite bearing flotation concentrates. By using a UF Falcon, it was possible to achieve initial gravity REO recoveries exceeding 90% while rejecting on the order of 25% to 35% of the total calcium from an assortment of rougher and cleaner flotation concentrates. Additionally, when additional stages of cleaner UF Falcon gravity separation were operated in an open circuit configuration, it was possible, from an original fine feed of 35 microns containing 50.5% REO and 5.5% Ca, to upgrade up to approximately 59% REO and 2.0% calcium. While not the goal of this study, these results also support previous limited data to suggest that UF Falcons are potentially capable of treating a wider range of materials than they were originally designed for, including feeds rich in heavy mineral content. Full article
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy—2nd Edition)
Show Figures

Figure 1

20 pages, 2774 KB  
Article
Application of Falcon Centrifuge as a Cleaner Alternative for Complex Tungsten Ore Processing
by Yann. Foucaud, Quentin Dehaine, Lev. O. Filippov and Inna V. Filippova
Minerals 2019, 9(7), 448; https://doi.org/10.3390/min9070448 - 19 Jul 2019
Cited by 30 | Viewed by 7745
Abstract
Scheelite (CaWO4) is one of the main raw material for the production of tungsten. It is usually encountered in skarn deposits where it is commonly associated with other calcium minerals as fluorite, apatite, and calcium silicates. Worldwide, scheelite is upgraded to [...] Read more.
Scheelite (CaWO4) is one of the main raw material for the production of tungsten. It is usually encountered in skarn deposits where it is commonly associated with other calcium minerals as fluorite, apatite, and calcium silicates. Worldwide, scheelite is upgraded to the chemical grades by direct flotation, but the separation efficiency remains limited due to similar flotation behaviors of scheelite and gangue minerals with fatty acid. The only solutions used to overcome this issue involve high energy consumption or ecotoxic reagents. In the present study, a novel method based on the use of a centrifugal Falcon concentrator was investigated to perform an efficient elimination of gangue minerals and fine particles as well as an acceptable scheelite recovery enabling a decrease of the flotation reagents consumption. The performances of the two types of laboratory Falcon bowls, Falcon UltraFine (UF) and Falcon Semi-Batch (SB), were modeled using the design of experiments (DoE) methodology, which allowed to determine the best operating parameters for each bowl. The separation performances were mainly affected by the rotary speed and the pulp density for the Falcon UF and by the rotary speed and the fluidization pressure for the Falcon SB. Due to the fluidization pressure, the Falcon SB exhibited higher gangue minerals rejection with slightly lower recoveries than the Falcon UF. Overall, the optimized Falcon SB test allowed to reach 71.6%, 22.6%, 17.2%, and 12.6% for scheelite, calcium salts, dense calcium silicates, and light non-calcic silicates respectively while the desliming efficiency reached 98.8%. For comparison purposes, a classical hydrocyclone allowed to attain 89.1%, 89.3%, 79.5%, and 76.5% for scheelite, calcium salts, dense calcium silicates, and light non-calcic silicates respectively while the desliming efficiency reached 52.0%. Theses results can be used reliably to assess the separation performances of an industrial Falcon C which can be regarded, along with Falcon SB, as a sustainable and efficient gangue rejection method for complex W skarn ore, which allows the use of environmentally friendly reagents during downstream flotation stages. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop