Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = UBC watershed model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9728 KiB  
Article
Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios
by Shabeh ul Hasson
Climate 2016, 4(3), 40; https://doi.org/10.3390/cli4030040 - 26 Aug 2016
Cited by 50 | Viewed by 11589
Abstract
Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB) suggests that the future of its melt-dominated hydrological regime [...] Read more.
Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB) suggests that the future of its melt-dominated hydrological regime and the subsequent water availability under changing climate has yet been understood only indistinctly. Here, the future water availability from the UIB is presented under both observed and projected—though likely but contrasting—climate change scenarios. Continuation of prevailing climatic changes suggests decreased and delayed glacier melt but increased and early snowmelt, leading to reduction in the overall water availability and profound changes in the overall seasonality of the hydrological regime. Hence, initial increases in the water availability due to enhanced glacier melt under typically projected warmer climates, and then abrupt decrease upon vanishing of the glaciers, as reported earlier, is only true given the UIB starts following uniformly the global warming signal. Such discordant future water availability findings caution the impact assessment communities to consider the relevance of likely (near-future) climate change scenarios—consistent to prevalent climatic change patterns—in order to adequately support the water resource planning in Pakistan. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water Resources)
Show Figures

Figure 1

17 pages, 1623 KiB  
Article
Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed
by Dimitris Fotakis, Epameinondas Sidiropoulos and Athanasios Loukas
Water 2014, 6(3), 500-516; https://doi.org/10.3390/w6030500 - 19 Mar 2014
Cited by 7 | Viewed by 8455
Abstract
Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM) contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model [...] Read more.
Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM) contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM). WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses. Full article
(This article belongs to the Special Issue Flood Estimation and Analysis in a Variable and Changing Environment)
Show Figures

Figure 1

Back to TopTop