Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Trichoderma spiralis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6337 KiB  
Article
Impact of Trichoderma spiralis Treatment on the Photothermal Water Evaporation Capacity of Poplar
by Wei Xiong, Junfei Xue, Lin Wang and Dagang Li
Forests 2024, 15(10), 1837; https://doi.org/10.3390/f15101837 - 21 Oct 2024
Viewed by 1108
Abstract
In recent years, research on interfacial photothermal water evaporation has been thriving. Due to its inherent porosity, exceptional hydrophilicity, and renewable characteristics, wood has garnered significant attention as a material for interfacial photothermal evaporation absorbers. In order to enhance the cellular channels of [...] Read more.
In recent years, research on interfacial photothermal water evaporation has been thriving. Due to its inherent porosity, exceptional hydrophilicity, and renewable characteristics, wood has garnered significant attention as a material for interfacial photothermal evaporation absorbers. In order to enhance the cellular channels of poplar and improve its water migration capacity, Trichoderma spiralis was selected to inoculate and culture poplar specimens from different sections for 3, 5, and 7 weeks. Simultaneously, a solar radiation intensity of 1 kW·m−2 was simulated to perform photothermal evaporation tests on the specimens. This validated the water migration capabilities of different sections of poplar treated with Trichoderma spiralis under light and heat exposure. The characteristic changes were analyzed using electron microscope scanning, infrared spectrum analysis, X-ray photoelectron spectroscopy analysis, surface infiltration performance, and automatic specific surface porosity. The results suggested that the moderate degradation of cellulose and hemicellulose in poplar by Trichoderma spiralis could dredge the cell channels and improve the permeability of poplar, particularly with regard to lateral permeability. The maximum photothermal evaporation rate of the poplar specimen reached 1.18 kg m−2 h−1, while the evaporation efficiency increased to 72.2%. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

Back to TopTop