Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Thomson vortex N-gon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 751 KB  
Article
On the Effects of Circulation around a Circle on the Stability of a Thomson Vortex N-gon
by Leonid Kurakin and Irina Ostrovskaya
Mathematics 2020, 8(6), 1033; https://doi.org/10.3390/math8061033 - 24 Jun 2020
Cited by 4 | Viewed by 3446
Abstract
The stability problem of the stationary rotation of N identical point vortices is considered. The vortices are located on a circle of radius R 0 at the vertices of a regular N-gon outside a circle of radius R. The circulation [...] Read more.
The stability problem of the stationary rotation of N identical point vortices is considered. The vortices are located on a circle of radius R 0 at the vertices of a regular N-gon outside a circle of radius R. The circulation Γ around the circle is arbitrary. The problem has three parameters N, q, Γ , where q = R 2 / R 0 2 . This old problem of vortex dynamics is posed by Havelock (1931) and is a generalization of the Kelvin problem (1878) on the stability of a regular vortex polygon (Thomson N-gon) on the plane. In the case of Γ = 0 , the problem has already been solved: in the linear setting by Havelock, and in the nonlinear setting in the series of our papers. The contribution of this work to the solution of the problem consists in the analysis of the case of non-zero circulation Γ 0 . The linearization matrix and the quadratic part of the Hamiltonian are studied for all possible parameter values. Conditions for orbital stability and instability in the nonlinear setting are found. The parameter areas are specified where linear stability occurs and nonlinear analysis is required. The nonlinear stability theory of equilibria of Hamiltonian systems in resonant cases is applied. Two resonances that lead to instability in the nonlinear setting are found and investigated, although stability occurs in the linear approximation. All the results obtained are consistent with those known for Γ = 0 . This research is a necessary step in solving similar problems for the case of a moving circular cylinder, a model of vortices inside an annulus, and others. Full article
(This article belongs to the Special Issue Vortex Dynamics: Theory and Application to Geophysical Flows)
Show Figures

Figure 1

Back to TopTop