Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Taojiang River Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3449 KiB  
Article
Response of Floods to the Underlying Surface Changes in the Taojiang River Basin Using the Hydrologic Engineering Center’s Hydrologic Modeling System
by Yong Xiao, Tianfu Wen, Ping Gu, Bin Xiong, Fei Xu, Junlin Chen and Jiayu Zou
Water 2024, 16(8), 1120; https://doi.org/10.3390/w16081120 - 15 Apr 2024
Cited by 2 | Viewed by 1321
Abstract
Due to underlying surface changes (USCs), the changes in the Taojiang River Basin’s flood generation conditions could impact the flooding process in the basin. However, most studies have typically focused on either land-use changes (LUCs) or soil and water conservation measures (SWCMs) to [...] Read more.
Due to underlying surface changes (USCs), the changes in the Taojiang River Basin’s flood generation conditions could impact the flooding process in the basin. However, most studies have typically focused on either land-use changes (LUCs) or soil and water conservation measures (SWCMs) to assess the impact of the USCs on floods, which may not provide a more comprehensive understanding of the response of floods to the USCs. To investigate how the USCs have altered the floods in the Taojiang River Basin, located upstream of Poyang Lake, China, the HEC-HMS model, which incorporates the influence of the USCs into the parameter calibration, is established in this study to investigate the flood processes on an hourly scale. The flood peak and the maximum 72 h flood volume are selected as two indexes and are applied to analyze the changes in floods caused by the USCs. The 1981–2020 period is divided into three sub-periods (i.e., 1981–1992, 1993–2007, and 2008–2020) based on the conditions of the USCs. It is found that the two indexes have exhibited decreasing trends, mainly due to the USCs during 1981–2020. Benchmarked against the baseline period of 1981–1992, the two indexes decreased by 3.06% (the flood peak) and 4.00% (the maximum 72 h flood volume) during 1993–2007 and by 5.92% and 7.58% during 2008–2020. Moreover, the impacts of the LUCs and SWCMs are separated through parameter adjustments in the model, revealing that the SWCMs played a dominant role in the USCs in the Taojiang River Basin. The quantification and assessment of the impact of the USCs on floods of different magnitudes revealed that the influence decreases with increasing flood magnitude. The results of this study improve our understanding of how USCs affect the flooding process and therefore provide support for flood control management under changing environments. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 75766 KiB  
Article
Analyses of Runoff and Sediment Transport and their Drivers in a Rare Earth Mine Drainage Basin of the Yangtze River, China
by Youcun Liu, Qianqian Ding, Ming Chen, Lirong Zhong, David Labat, Ming Zhang, Yimin Mao and Yongtao Li
Water 2020, 12(8), 2283; https://doi.org/10.3390/w12082283 - 13 Aug 2020
Cited by 6 | Viewed by 2469
Abstract
A comprehensive analysis of the effects of major climate conditions such as El Nino Southern Oscillation (ENSO) and precipitation on changes in runoff and sediment transport in a basin may provide a scientific basis and technical support for regional water resource management and [...] Read more.
A comprehensive analysis of the effects of major climate conditions such as El Nino Southern Oscillation (ENSO) and precipitation on changes in runoff and sediment transport in a basin may provide a scientific basis and technical support for regional water resource management and protection of the aquatic ecology. Taking the Taojiang River as an example, a large set of hydrogeographic data on runoff and sediment transport measured on a monthly basis from 1957 to 2015 was analyzed to study the impacts of various correlation factors on runoff and sediment transport in the river, which is located in the middle and lower reaches of the Yangtze River. Besides the conventional Mann–Kendall (M-K) method, cross-wavelet and wavelet coherence analysis methods were also applied in the data analysis. The results showed that: (1) From the M-K mutation tests conducted for the runoff volume and the sediment transport rate from 1957 to 2015, there were no significant changes in runoff. However, a mutation occurred in the sediment transport rate in 2005 and the average annual decrease reached 88.2237 million tons. (2) Precipitation was a dominant factor that controlled the changes in runoff volume and sediment transport rate. It directly influenced the changes in runoff volume, which subsequently caused the changes in sediment transport rate in the study area. Since the year 2005, sediment transport rates have been heavily influenced by the construction of large-scale hydro-power stations (Julongtan), causing a significant rate decline. A comparison between the sediment transport volume during 2005 to 2015 and that during 1980 to 2004 revealed that the annual sediment transport decrease reached 84.4079 million tons, accounting for 95.7% of the total decrease in sediment transport volume. (3) The significant resonance cycle between the sea surface temperature (SST) and the precipitation, runoff volume and sediment transport mainly occurred with a cyclic period between 1.33 and 5.33 years. During an ENSO event, the precipitation, runoff, and sediment transport rates all decreased at the beginning, then increased and reached their maximums, followed by a decline at the end. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

Back to TopTop