Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = TTGO TBeam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4191 KB  
Article
Development of a Unified IoT Platform for Assessing Meteorological and Air Quality Data in a Tropical Environment
by David Kairuz-Cabrera, Victor Hernandez-Rodriguez, Olivier Schalm, Alain Martinez, Pedro Merino Laso and Daniellys Alejo-Sánchez
Sensors 2024, 24(9), 2729; https://doi.org/10.3390/s24092729 - 25 Apr 2024
Cited by 7 | Viewed by 2685
Abstract
In developing nations, outdated technologies and sulfur-rich heavy fossil fuel usage are major contributors to air pollution, affecting urban air quality and public health. In addition, the limited resources hinder the adoption of advanced monitoring systems crucial for informed public health policies. This [...] Read more.
In developing nations, outdated technologies and sulfur-rich heavy fossil fuel usage are major contributors to air pollution, affecting urban air quality and public health. In addition, the limited resources hinder the adoption of advanced monitoring systems crucial for informed public health policies. This study addresses this challenge by introducing an affordable internet of things (IoT) monitoring system capable of tracking atmospheric pollutants and meteorological parameters. The IoT platform combines a Bresser 5-in-1 weather station with a previously developed air quality monitoring device equipped with Alphasense gas sensors. Utilizing MQTT, Node-RED, InfluxDB, and Grafana, a Raspberry Pi collects, processes, and visualizes the data it receives from the measuring device by LoRa. To validate system performance, a 15-day field campaign was conducted in Santa Clara, Cuba, using a Libelium Smart Environment Pro as a reference. The system, with a development cost several times lower than Libelium and measuring a greater number of variables, provided reliable data to address air quality issues and support health-related decision making, overcoming resource and budget constraints. The results showed that the IoT architecture has the capacity to process measurements in tropical conditions. The meteorological data provide deeper insights into events of poorer air quality. Full article
Show Figures

Figure 1

Back to TopTop