Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = TIA-1 related protein (TIAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4036 KiB  
Article
Decoding the Molecular Grammar of TIA1-Dependent Stress Granules in Proteostasis and Welander Distal Myopathy Under Oxidative Stress
by Isabel Alcalde-Rey, Beatriz Ramos Velasco, José Alcalde and José M. Izquierdo
Cells 2024, 13(23), 1961; https://doi.org/10.3390/cells13231961 - 27 Nov 2024
Viewed by 1323
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e., formation, assembly, [...] Read more.
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e., formation, assembly, and disassembly) of transient RNA-protein aggregates known as stress granules (SGs). A protein related to TIA1 is its paralog TIA1-related/like protein (TIAR/TIAL1), whose amino acid sequence, structural organisation, and molecular and cellular functions are highly conserved with TIA1. Both proteins are the main components of SGs, which are non-membranous RNA-protein condensates formed under stress to promote cell survival. Welander distal myopathy (WDM) is a late-onset muscular dystrophy that has been linked to a single-nucleotide substitution (c.1362G>A; p.E384K) in the gene encoding the TIA1 protein, which impacts TIA1-dependent SGs dynamics. Herein, we have analysed cellular and molecular aspects by targeting mutagenesis to position 384 to understand its molecular grammar in an amino acid/proteinogenic-dependent or -independent manner under oxidative stress. The observations suggest differential, even opposing, behaviours between TIA1 and TIAR in the presence of specific amino acids with negative and positive charges, and also uncharged acids, at equivalent positions of TIA1 and TIAR, respectively. Collectively, these findings illustrate a characteristic molecular grammar of TIAR- and TIA1-dependent SGs under oxidative conditions, suggesting a gain of versatility between two structurally and functionally highly conserved/related proteins. Full article
Show Figures

Figure 1

14 pages, 6290 KiB  
Review
Bibliometric Overview on T-Cell Intracellular Antigens and Their Pathological Implications
by Beatriz Ramos-Velasco, Rocío Naranjo and José M. Izquierdo
Biology 2024, 13(3), 195; https://doi.org/10.3390/biology13030195 - 19 Mar 2024
Viewed by 2202
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-like/related protein (TIAL1/TIAR) are two members of the classical family of RNA binding proteins. Through their selective interactions with distinct RNAs and proteins, these multifunctional regulators are involved in chromatin remodeling, RNA splicing and processing and translation [...] Read more.
T-cell intracellular antigen 1 (TIA1) and TIA1-like/related protein (TIAL1/TIAR) are two members of the classical family of RNA binding proteins. Through their selective interactions with distinct RNAs and proteins, these multifunctional regulators are involved in chromatin remodeling, RNA splicing and processing and translation regulation, linking them to a wide range of diseases including neuronal disorders, cancer and other pathologies. From their discovery to the present day, many studies have focused on the behavior of these proteins in order to understand their impact on molecular and cellular processes and to understand their relationship to human pathologies. The volume of research on these proteins in various fields, including molecular biology, biochemistry, cell biology, immunology and cancer, has steadily increased, indicating a growing interest in these gene expression regulators among researchers. This information can be used to know the most productive institutions working in the field, understand the focus of research, identify key areas of involvement, delve deeper into their relationship and impact on different diseases, and to establish the level of study associated with them. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

24 pages, 3804 KiB  
Review
T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology
by Beatriz Ramos Velasco and José M. Izquierdo
Int. J. Mol. Sci. 2022, 23(14), 7836; https://doi.org/10.3390/ijms23147836 - 16 Jul 2022
Cited by 11 | Viewed by 3990
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the [...] Read more.
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

12 pages, 1717 KiB  
Review
RNA Recognition and Stress Granule Formation by TIA Proteins
by Saboora Waris, Matthew Charles James Wilce and Jacqueline Anne Wilce
Int. J. Mol. Sci. 2014, 15(12), 23377-23388; https://doi.org/10.3390/ijms151223377 - 16 Dec 2014
Cited by 63 | Viewed by 13201
Abstract
Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression [...] Read more.
Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress. Full article
(This article belongs to the Special Issue Post-Transcriptional Gene Regulation by Ribonucleoprotein Complexes)
Show Figures

Figure 1

Back to TopTop