Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = TCR-mimic antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 8752 KB  
Article
T-Cell Receptor Sequences Identify Combined Coxsackievirus–Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus–Clostridia Infections for Type 1 Diabetes
by Robert Root-Bernstein
Int. J. Mol. Sci. 2024, 25(3), 1797; https://doi.org/10.3390/ijms25031797 - 1 Feb 2024
Cited by 2 | Viewed by 3375
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the [...] Read more.
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored. Full article
(This article belongs to the Special Issue New Trends in Diabetes, Hypertension and Cardiovascular Diseases 2.0)
Show Figures

Figure 1

12 pages, 1329 KB  
Review
The Intracellular Proteome as a Source for Novel Targets in CAR-T and T-Cell Engagers-Based Immunotherapy
by Inbar Arman, Maya Haus-Cohen and Yoram Reiter
Cells 2023, 12(1), 27; https://doi.org/10.3390/cells12010027 - 21 Dec 2022
Cited by 10 | Viewed by 4092
Abstract
The impressive clinical success of cancer immunotherapy has motivated the continued search for new targets that may serve to guide potent effector functions in an attempt to efficiently kill malignant cells. The intracellular proteome is an interesting source for such new targets, such [...] Read more.
The impressive clinical success of cancer immunotherapy has motivated the continued search for new targets that may serve to guide potent effector functions in an attempt to efficiently kill malignant cells. The intracellular proteome is an interesting source for such new targets, such as neo-antigens and others, with growing interest in their application for cell-based immunotherapies. These intracellular-derived targets are peptides presented by MHC class I molecules on the cell surface of malignant cells. These disease-specific class I HLA–peptide complexes can be targeted by specific TCRs or by antibodies that mimic TCR-specificity, termed TCR-like (TCRL) antibodies. Adoptive cell transfer of TCR engineered T cells and T-cell-receptor-like based CAR-T cells, targeted against a peptide-MHC of interest, are currently tested as cancer therapeutic agents in pre-clinical and clinical trials, along with soluble TCR- and TCRL-based agents, such as immunotoxins and bi-specific T cell engagers. Targeting the intracellular proteome using TCRL- and TCR-based molecules shows promising results in cancer immunotherapy, as exemplified by the success of the anti-gp100/HLA-A2 TCR-based T cell engager, recently approved by the FDA for the treatment of unresectable or metastatic uveal melanoma. This review is focused on the selection and isolation processes of TCR- and TCRL-based targeting moieties, with a spotlight on pre-clinical and clinical studies, examining peptide-MHC targeting agents in cancer immunotherapy. Full article
(This article belongs to the Special Issue CAR T Cells: A Road Trip to Tumor Elimination)
Show Figures

Figure 1

28 pages, 1429 KB  
Review
Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer
by Mariam Elshiaty, Hannah Schindler and Petros Christopoulos
Int. J. Mol. Sci. 2021, 22(11), 5632; https://doi.org/10.3390/ijms22115632 - 26 May 2021
Cited by 78 | Viewed by 21582
Abstract
Building upon the resounding therapeutic success of monoclonal antibodies, and supported by accelerating progress in engineering methods, the field of multispecific therapeutic antibodies is growing rapidly. Over 140 different molecules are currently in clinical testing, with excellent results in recent phase 1–3 clinical [...] Read more.
Building upon the resounding therapeutic success of monoclonal antibodies, and supported by accelerating progress in engineering methods, the field of multispecific therapeutic antibodies is growing rapidly. Over 140 different molecules are currently in clinical testing, with excellent results in recent phase 1–3 clinical trials for several of them. Multivalent bispecific IgG-modified formats predominate today, with a clear tendency for more target antigens and further increased valency in newer constructs. The strategies to augment anticancer efficacy are currently equally divided between disruption of multiple surface antigens, and additional redirection of cytotoxic T or NK lymphocytes against the tumor. Both effects complement other modern modalities, such as tyrosine kinase inhibitors and adoptive cell therapies, with which multispecifics are increasingly applied in combination or merged, for example, in the form of antibody producing CAR-T cells and oncolytics. While mainly focused on B-cell malignancies early on, the contemporary multispecific antibody sector accommodates twice as many trials against solid compared to hematologic cancers. An exciting emerging prospect is the targeting of intracellular neoantigens using T-cell receptor (TCR) fusion proteins or TCR-mimic antibody fragments. Considering the fact that introduction of PD-(L)1 inhibitors only a few years ago has already facilitated 5-year survival rates of 30–50% for per se highly lethal neoplasms, such as metastatic melanoma and non-small-cell lung carcinoma, the upcoming enforcement of current treatments with “next-generation” immunotherapeutics, offers a justified hope for the cure of some advanced cancers in the near future. Full article
(This article belongs to the Special Issue Monoclonal Antibodies to Treat Cancer)
Show Figures

Figure 1

18 pages, 3251 KB  
Article
The Antitumor Activity of TCR-Mimic Antibody-Drug Conjugates (TCRm-ADCs) Targeting the Intracellular Wilms Tumor 1 (WT1) Oncoprotein
by Ying Shen, Yi-Ming Li, Jing-Jing Zhou, Zhan Zhou, Ying-Chun Xu, Wen-Bin Zhao and Shu-Qing Chen
Int. J. Mol. Sci. 2019, 20(16), 3912; https://doi.org/10.3390/ijms20163912 - 12 Aug 2019
Cited by 16 | Viewed by 7196
Abstract
Wilms tumor 1 (WT1) oncoprotein is an intracellular oncogenic transcription factor which is barely expressed in normal adult tissues but over expressed in a variety of leukemias and solid cancers. WT1-derived HLA-A*02:01 T cell epitope, RMFPNAPYL (RMF), is a validated target for T [...] Read more.
Wilms tumor 1 (WT1) oncoprotein is an intracellular oncogenic transcription factor which is barely expressed in normal adult tissues but over expressed in a variety of leukemias and solid cancers. WT1-derived HLA-A*02:01 T cell epitope, RMFPNAPYL (RMF), is a validated target for T cell-based immunotherapy. We generated two T cell receptor mimic antibody-drug conjugates (TCRm-ADCs), ESK-MMAE, and Q2L-MMAE, against WT1 RMF/HLA-A*02:01 complex with distinct affinities, which mediate specific antitumor activity. Although ESK-MMAE showed higher tumor growth inhibition ratio in vivo, the efficacy of them was not so promising, which might be due to low expression of peptide/HLA targets. Therefore, we explored a bispecific TCRm-ADC that exerted more potent tumor cytotoxicity compared with TCRm-ADCs. Hence, our findings validate the feasibility of the presenting intracellular peptides as the targets of ADCs, which broadens the antigen selection range of antibody-based drugs and provides new strategies for precision medicine in tumor therapy. Full article
Show Figures

Figure 1

23 pages, 3445 KB  
Article
Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies
by Robert Root-Bernstein
Int. J. Mol. Sci. 2017, 18(10), 2091; https://doi.org/10.3390/ijms18102091 - 3 Oct 2017
Cited by 17 | Viewed by 8388
Abstract
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). [...] Read more.
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections. Full article
(This article belongs to the Special Issue Signaling Pathway of Immune Cells and Immune Disorder)
Show Figures

Graphical abstract

Back to TopTop