Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Styrax Japonica Sieb. et Zucc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4480 KiB  
Article
Physiological and Biochemical Measurements Reveal How Styrax japonica Seedlings Response to Flooding Stress
by Gaoyuan Zhang, Jinghan Dong, Chao Han, Zemao Liu, Jianbing Liu and Fangyuan Yu
Forests 2025, 16(4), 634; https://doi.org/10.3390/f16040634 - 5 Apr 2025
Viewed by 416
Abstract
This study investigated the physiological and biochemical responses of Styrax japonica Sieb. et Zucc. seedlings to normal water and nutrient management (control group, CK), waterlogging (root submerged, T1), and partial submergence (partial stem submergence, T2) over a period of 25 days. Measurements of [...] Read more.
This study investigated the physiological and biochemical responses of Styrax japonica Sieb. et Zucc. seedlings to normal water and nutrient management (control group, CK), waterlogging (root submerged, T1), and partial submergence (partial stem submergence, T2) over a period of 25 days. Measurements of root activity, malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content, antioxidant enzyme (SOD, POD, and CAT), and anaerobic respiratory enzyme (LDH, ADH, and PDC) activities were conducted every 5 days. The results showed the following: the seedlings of the control group maintained high root activity and low oxidative damage levels throughout the experiment; under T1 treatment, root activity initially increased but declined, while MDA and H2O2 content gradually increased; T2 seedlings showed little change initially, but root activity briefly increased at Day 20 before rapidly declining. Regarding the antioxidant system, the control group had the highest SOD activity, while seedlings under T1 and T2 treatments exhibited compensatory upregulation of CAT and POD activities (from Day 15 to 20). Additionally, under waterlogging stress, LDH and ADH activities significantly increased, reflecting the activation of anaerobic metabolic pathways, while PDC content continuously decreased, indicating that low-oxygen stress induced the accumulation of LDH and ADH but reduced ethanol fermentation. PCA revealed that the first two principal components explained 61.53% of the total variation, with PC1 (45.76%) reflecting the contrasting relationship between the activation of anaerobic metabolism (increased ADH and LDH activity) and decreased root activity under waterlogging stress, while PC2 (15.77%) primarily captured the responses of oxidative damage (increased MDA) and corresponding antioxidant defense (upregulated CAT and POD activities). Overall, S. japonica seedlings adapt to short-term waterlogging stress by regulating anaerobic respiration and antioxidant systems, but prolonged stress leads to a continued increase in H2O2 and a decline in antioxidant enzyme activities. This study provides experimental evidence and theoretical support for understanding the waterlogging tolerance mechanisms of S. japonica. This experiment provides important information on the adaptive mechanisms of plants under waterlogging stress. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

16 pages, 1530 KiB  
Article
Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor
by Kyung-Ran Park, SooHyun Kim, MyoungLae Cho, Sang Wook Kang and Hyung-Mun Yun
Int. J. Mol. Sci. 2020, 21(24), 9579; https://doi.org/10.3390/ijms21249579 - 16 Dec 2020
Cited by 18 | Viewed by 3071
Abstract
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological [...] Read more.
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis. Full article
(This article belongs to the Special Issue Novel Extracellular and Intracellular Signalling Mechanisms in Bone)
Show Figures

Figure 1

Back to TopTop