Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Streptomyces xiamenensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 620 KiB  
Communication
In Vivo Metabolism Study of Xiamenmycin A in Mouse Plasma by UPLC-QTOF-MS and LC-MS/MS
by Feng Lei, Du Gao, Xi Zhang, Jun Xu and Min-Juan Xu
Mar. Drugs 2015, 13(2), 727-740; https://doi.org/10.3390/md13020727 - 28 Jan 2015
Cited by 7 | Viewed by 6600
Abstract
Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of [...] Read more.
Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of xiamenmycin A in mouse plasma was investigated by relative quantification. After two types of administration of xiamenmycin A at a single dose of 10 mg/kg, the plasma concentrations were measured quantitatively by LC-MS/MS. The dynamic changes in the xiamenmycin A concentration showed rapid absorption and quick elimination in plasma post-administration. Four metabolites (M1–M4) were identified in blood by UPLC-QTOF-MS, and xiamenmycin B (M3) is the principal metabolite in vivo, as verified by comparison of the authentic standard sample. The structures of other metabolites were identified based on the characteristics of their MS and MS/MS data. The newly identified metabolites are useful for understanding the metabolism of xiamenmycin A in vivo, aiming at the development of an anti-fibrotic drug candidate for the therapeutic treatment of excessive fibrotic diseases. Full article
Show Figures

Figure 1

15 pages, 691 KiB  
Article
Identification of Two Novel Anti-Fibrotic Benzopyran Compounds Produced by Engineered Strains Derived from Streptomyces xiamenensis M1-94P that Originated from Deep-Sea Sediments
by Zhong-Yuan You, Ya-Hui Wang, Zhi-Gang Zhang, Min-Juan Xu, Shu-Jie Xie, Tie-Sheng Han, Lei Feng, Xue-Gong Li and Jun Xu
Mar. Drugs 2013, 11(10), 4035-4049; https://doi.org/10.3390/md11104035 - 22 Oct 2013
Cited by 15 | Viewed by 7739
Abstract
The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for [...] Read more.
The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds. Full article
(This article belongs to the Special Issue Advances and New Perspectives in Marine Biotechnology)
Show Figures

Figure 1

16 pages, 345 KiB  
Article
Identification and Characterization of an Anti-Fibrotic Benzopyran Compound Isolated from Mangrove-Derived Streptomyces xiamenensis
by Min-Juan Xu, Xiao-Jin Liu, Yi-Lei Zhao, Dong Liu, Zhen-Hao Xu, Xiao-Meng Lang, Ping Ao, Wen-Han Lin, Song-Lin Yang, Zhi-Gang Zhang and Jun Xu
Mar. Drugs 2012, 10(3), 639-654; https://doi.org/10.3390/md10030639 - 15 Mar 2012
Cited by 35 | Viewed by 10714
Abstract
An anti-fibrotic compound produced by Streptomyces xiamenensis, found in mangrove sediments, was investigated for possible therapeutic effects against fibrosis. The compound, N-[[3,4-dihydro-3S-hydroxy-2S-methyl-2-(4¢R-methyl-3¢S-pentenyl)-2H-1-benzopyran-6-yl]carbonyl]-threonine (1), was isolated from crude extracts and its [...] Read more.
An anti-fibrotic compound produced by Streptomyces xiamenensis, found in mangrove sediments, was investigated for possible therapeutic effects against fibrosis. The compound, N-[[3,4-dihydro-3S-hydroxy-2S-methyl-2-(4¢R-methyl-3¢S-pentenyl)-2H-1-benzopyran-6-yl]carbonyl]-threonine (1), was isolated from crude extracts and its structure, including the absolute configuration was determined by extensive spectroscopic data analyses, Mosher’s method, Marfey’s reagent and quantum mechanical calculations. In terms of biological effects, this compound inhibits the proliferation of human lung fibroblasts (WI26), blocks adhesion of human acute monocytic leukemia cells (THP-1) to a monolayer of WI26 cells, and reduces the contractile capacity of WI26 cells in three-dimensional free-floating collagen gels. Altogether, these data indicate that we have identified a bioactive alkaloid (1) with multiple inhibitory biological effects on lung excessive fibrotic characteristics, that are likely involved in fibrosis, suggesting that this molecule might indeed have therapeutic potential against fibrosis. Full article
Show Figures

Graphical abstract

Back to TopTop